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Abstract

The aim of nanotechnology is to understand the properties of structures at
the smallest length scales. One of the most fundamental properties of any
nanostructure is its three-dimensional composition. Current state-of-the-art
methods for such characterization which allow for not only surface topogra-
phy but also internal structure mapping are TEM tomography and FIBSEM
cross-sectional milling. Multi-Energy Deconvolution Scanning Electron Mi-
croscopy (MEDSEM) is a novel alternative to these electron microscope to-
mography techniques. MEDSEM works by obtaining backscattered electron
images at multiple electron acceleration voltages and subsequently applying
a deconvolution to the obtained image stack. Since every backscattered elec-
tron image contains some mixture of information from the structure’s interior,
and the penetration depth of electrons is larger at increased beam acceler-
ation voltages, depth-information can already be retrieved by only varying
the beam acceleration voltage. Furthermore, imaging backscattered electron
provides elemental contrast as a function of depth. In this study we show that
this approach allows the probing of the interior up to depths of ∼ 100±10 nm
for both Ag@Cu2O and Au@Cu2O core-shell nanowires and the visualization
of Au@Cu2O core-shell nanoparticles lying underneath material layers with
a thickness of up to 105±10 nm. This is achieved at nanometer length scales
by a simple, non-destructive alternative to conventional electron microscope
tomography.
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Chapter 1

Introduction

1.1 Volumetric Electron Microscopy
A microscope is a device that allows the visualization of systems that cannot
be observed by the naked eye. Modern optical microscopes not only optically
magnify small systems, they can also image a system’s interior by optical sec-
tioning methods. For instance, M.B. Ahrens et al. (2013) used this method
to record in vivo the activity throughout the entire volume of the brain of the
larval zebrafish[1]. However, imaging the interior of smaller systems requires
the Scanning Electron Microscope (SEM).

The SEM uses electrons instead of photons to form images. Since the
wavelength of an electron is much smaller than the diffraction limit in op-
tical microscopy, ultra-high resolutions down to 50 pm can be reached, as
demonstrated by R. Erni et al. (2009) in a transmission electron microscope
(TEM)[2]. The SEM forms an image by scanning a primary electron beam
over a surface while collecting signals emitted from the sample, as illustrated
in Figure 1.1.

The SEM can also be used to image three-dimensional (3D) systems.
One method therefore is ‘slice-and-view’. Slice-and-view can be interpreted
literally: one repeatedly images an interface and subsequently removes a layer
of material while destroying the sample in the process. This method is used
in both Serial Block-Face Scanning Electron Microscopy (SBFSEM) and Fo-
cused Ion Beam Scanning Electron Microscopy (FIBSEM). In SBFSEM, a
diamond knife repeatedly removes thin slices of the top of the sample while
imaging the exposed block-face[3]. In this way, for instance, Thompson et al.
(2013) succeeded in mapping the elemental distribution of aluminum alloys
at a slice thickness of 15 nm[4], as shown in Figure 1.2 A. On the other hand,
FIBSEM uses a beam of gallium ions for the cross-sectional milling of thin
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Figure 1.1: Working principles of the SEM. A, Schematic of electron microscope. Image
obtained from [7]. B, Interaction volume of the beam indicating the several regions from
which characteristic signals originate. Image obtained from [7]. C, Top: secondary electron
image showing surface topography. Bottom: backscattered electron image showing elemental
contrast between Cu2O (gray) and Au region (white). The scale bar is 400 nm.

layers from the sample. By using FIBSEM Wei et al. (2012) imaged a whole
yeast cell in 3D [5], as shown in Figure 1.2 B. Slice-and-view allows voxel
sizes down to 3× 3× 3 nm3[6].

The 3D imaging of even smaller systems can be achieved by TEM To-
mography (TEMT). With TEMT one acquires a ‘tilt-series’ of transmission
electron images by imaging the sample at various tilt angles. Then, a 3D
reconstruction of the sample is calculated by a backprojection algorithm
from the absorption contrast on the acquired tilt-series. In this way van
Aert et al. succeeded in fully mapping the positions of 784 atoms in an Ag
nanocluster[8]. Furthermore, Haberfehlner et al. (2013) used TEMT to re-
veal the 3D chemical structure of a tri-gate transistor for microelectronic
inspection[9]. Both examples were obtained at sub-nanometer sized voxels
and are shown respectively in Figures 1.2 C and D.

These three methods can not only image but also perform chemical char-
acterization in 3D at nanometer length scales. This can be achieved by either
detecting elemental contrast on backscattered electron (BSE) or transmission
electron images or by employing energy-dispersive X-ray spectroscopy. The
possibility of detecting the 3D composition of nanostructures is what makes
TEMT, SBFSEM and FIBSEM frequently applied characterization methods
in materials science, nanotechnology and the life sciences.
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Figure 1.2: Volumetric electron microscopy. A, 3D elemental map of an Al-Cu alloy.
Image obtained from [4]. B, 3D image of a yeast cell containing various cell components.
Image obtained from [5]. C, 3D representation of Ag atoms in a nanocluster. Image ob-
tained from [8]. D, Tri-gate transistor in 3D. The scale bar is 10 nm. Image obtained
from [9]. E, The workflow of MEDSEM. F, 3D image obtained with MEDSEM of an Au
nanowire lying underneath an Au sheet.

1.2 Multi-Energy Deconvolution Scanning Elec-
tron Microscopy

Despite the resolving power in 3D of electron microscopes, serious draw-
backs exist for them. Both SBFSEM and FIBSEM irreparably destroy the
sample while acquiring a 3D image and thus seriously restrict the charac-
terization workflow. Furthermore, their data throughput can be low when
cutting many, thin slices[6]. On the other hand, TEMT requires relatively
thin and specially prepared samples that do not allow a wide viewing field
[10]. In addition, acquiring a tilt-series over a large range of angles requires
a long total beam exposure time at relatively high beam energies and thus
possibly damages the sample. Finally, all three devices are complex and ex-
pensive. These drawbacks can be overcome by Multi-Energy Deconvolution
Scanning Electron Microscopy (MEDSEM), a novel 3D SEM characterization
tool that could serve as an alternative, or addition, to SBFSEM, FIBSEM
and TEMT.

MEDSEM was recently developed by FEI Company to image biological
structures in 3D[11]. It works by solving the inverse problem of BSE image
formation in an electron microscope[12–14]. A BSE image is formed from the
convolution of the primary beam with a sample’s 3D structure. Increasing the
acceleration voltage Vacc allows the BSEs to probe deeper regions in the sam-
ple prior to detection and the deconvolution then encompasses deeper regions
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of the structure. Then, acquiring BSE images at various Vacc’s, a multi-energy
BSE image stack, and the deconvolution thereof provides a representation of
the 3D structure of the sample. However, performing the deconvolution is
far from trivial and to approximately solve it a linearized blind deconvo-
lution, or Blind Source Separation (BSS), is applied. While doing so, both
a point-spread-function (PSF) of the beam broadening along depth and a
layered 3D structure of the sample are simultaneously estimated without a
priori information of both. This is done by applying similar BSS methods
as encountered in problems of speech recognition[15], medical imaging[16],
astronomy[17], fluorescence microscopy[18] and geology[19]. Then, a 3D im-
age of the sample can be reconstructed, as shown in Figures 1.2 E and F.
However, the depth resolution and probing depth are limited compared to
the conventional 3D electron microscope methods.

Despite these limitations, MEDSEM also offers advantages over conven-
tional electron microscope tomography. For instance, besides sample thick-
ness almost no sample restrictions exist. Furthermore, the 3D imaging is
non-destructive and large field widths at high throughput can be imaged. Fi-
nally, it requires only an electron beam and a backscattered electron detector.
This makes MEDSEM easy to use and highly accessible for the nanotechnol-
ogy community, since most nanoscience groups already use SEM extensively
for the characterization of nanostructures.

Until now, MEDSEM has been developed within FEI research for the
imaging of stained biological tissues in 3D. These samples exhibit high el-
emental contrast between the epoxy matrix and osmium staining. Further-
more, low beam energies already allow deep penetration of the BSE’s into
the sample due to the low stopping power thereof. However, dense samples
with lower elemental contrast do not have these features and it is not yet
known how the acquisition and deconvolution of multi-energy BSE images
can reconstruct the 3D structure of such samples. In general, 3D imaging of
nanostructures with MEDSEM has not been explored yet.

The purpose of the research study presented in this thesis is to inves-
tigate the feasibility of applying MEDSEM to the 3D characterization of
Ag@Cu2O and Au@Cu2O core-shell nanostructures. More specifically, the
depth information present on multi-energy BSE images of nanostructures,
their deconvolution to reconstruct a nanostructure in 3D, the quality thereof,
till what depths structural features can still be retrieved, the corresponding
depth resolutions and artifacts limitating the 3D imaging of MEDSEM are
studied.
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Chapter 2

Principles of MEDSEM

2.1 Electron Trajectories in Solids
Electrons are spin 1/2 particles that carry a negative elementary charge
qe = 1.602 × 10−19 C. They can interact in multiple ways with their en-
vironment through their spin and charge. In the SEM, Coulomb scattering
from atoms is the most important interaction that contributes to the forma-
tion of BSE images.

Elastic Coulomb scattering is the process in which an electron’s trajec-
tory is deflected without energy loss upon colliding with the nucleus of an
atom of charge Zqe, where Z is its atomic number. This is described by the
differential scattering cross section dσ/dΩ, which is the ratio of electrons
scattered from the cross-section σ into the unit solid angle dΩ to the inci-
dent electron flux. For spinless electrons that neither penetrate the nucleus
nor scatter from other electrons, dσ/dΩ is given by Rutherford’s scattering
formula[20–22]:

dσ/dΩ =
[
Zq2e

4πε0E

]2 1
sin4(θ/2)

(2.1)

where E is the energy of the incident electron, ε0 is the permittivity of the
vacuum and θ is the scattering angle. Equation 2.1 does not hold any more
for energies E ¬ 10 keV and the more accurate and general Mott scattering
theory must be applied, resulting in a correction factor to Equation 2.1 [23–
25].

An electron also loses energy through inelastic scattering events as it
moves through a solid. A common energy-loss mechanism is secondary elec-
tron emission. Secondary electrons are ionized inner-shell electrons ejected
from their parent atom. Subsequently, an electron from one of the outer shells
can fill up the inner-shell hole while emitting an X-ray or another outer-shell
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Figure 2.1: The MC calculations of BSE trajectories (red) in an Au@Cu2O core shell
nanowire with the Au core in green and the Cu2O shell in blue on an orange silicon
substrate. Outer radius of the nanowire is 84 nm. A, Wire cross section containing electron
trajectories at Vacc =1 kV. B, BSE image of the nanowire at Vacc =1 kV. C, Wire cross
section containing electron trajectories at Vacc =10 kV. D, BSE image of the nanowire at
Vacc =10 kV.

electron.
Electron energy loss is not described by discrete energy-loss steps, but

by a continuous energy loss model. In this model the rate dE/dS (keV/cm) of
energy loss per travelled distance S is given by the modified Bethe Equation
[26, 27]:

dE

dS
= −78500

ρZ

AE
log

(1.166E
J

)
(2.2)

where ρ is the density of the material, Z the average atomic number, A the
average atomic weight and J the mean ionization potential, which is the av-
erage rate of energy transfer due to all possible inelastic events [27, 28].

An electron’s trajectory through a solid is determined by Equations 2.1
(or Mott theory) and 2.2. Despite this calculation being analytically impos-
sible to solve, good estimates thereof can be obtained by performing Monte
Carlo (MC) electron ray tracing calculations[22, 29–32]. In these, the pri-
mary beam electrons strike a randomly sampled point within the beam spot
on the sample. Then, the distance L an electron travels until a collision event
occurs is randomly sampled. Its new energy after traveling a distance L is
then calculated by Eat collision = Ebefore collision + dE

dS
L. Finally, the deflection

angle is randomly sampled from either the Rutherford or Mott scattering
dσ/dΩ. The last three steps are repeated until an electron exits the sample
in the direction of the incoming beam, which is then called a BSE.

Tracing many BSE trajectories obtained from MC calculations provides
insight in how they form BSE images. By collecting the BSEs while moving
the beam spot over the sample, a BSE image can be simulated, as shown in
Figure 2.1. All MC calculations in this study are performed with the Casino
v3.2 MC software[32].
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2.2 Image Formation in MEDSEM
The backscatter coefficient is the fraction of BSEs to primary beam electrons.
A BSE image contains a representation of the spatially varying backscatter
coefficient of the sample. For Vacc ¬100 kV the backscatter coefficient of bulk
materials is almost independent of Vacc[33]. However, the interaction volume’s
size and shape is highly dependent on Vacc, as can be seen in Figures 2.1 A
and C. Therefore, at high Vacc a BSE image is formed from BSEs that probed
deeper subsurface regions.

This mixture of BSEs emerging from several sample regions while form-
ing a BSE image YVacc at some Vacc is described by a convolution between
the primary beam and the sample’s 3D structure:

YVacc(x, y) = HVacc(x, y, z) ∗O(x, y, z) (2.3)

whereHVacc(x, y, z) is the corresponding beam broadening PSF and O(x, y, z)
the 3D structure of the sample[12–14].

In principle, the image formation is similar to the optical sectioning
method where one images at several focal planes within the sample. There,
the image at a certain depth is blurred by the optical PSF[1]. A BSE image
is formed similarly, since at a Vacc a focal plane at a certain depth within
the sample is imaged[34–36]. However, now the BSE image is blurred in the
sense that it also contains a signal arising from planes above and below its
focal plane[36].

This idea is illustrated in Figure 2.2, which shows how a BSE image
contains depth information of a structure. Figure 2.2 A shows the distribution
of maximum depth that electrons penetrate in Au before emerging as a BSE
for several Vacc, as obtained from MC calculations. There, the vertical lines
indicate the maximum depth that occurs with highest frequency. Figure 2.2 B
shows how this depth distribution of BSEs results in blurred image formation.
The BSE image Y1 at low Vacc contains mostly the signal of material layer O1,
since this is where the interaction volume is mostly orientated. Thus, one can
say that image Y1 represent the top structure of the sample. Upon increasing
Vacc BSE image Y2 contains a mixture of the signal from both layers O1 and
O2 and, therefore, represents a mixture of the structures of these. Further
increasing Vacc gives an mixture of all layers and the particle hidden in layer
O3 can be imaged, as depicted on the BSE images Y3 and Y4.

As already suggested by Figure 2.2, some simplifications can be applied
to approximately describe the image formation of Equation 2.3. One way is to
assume that the image formation follows an instantaneous mixing model. In
this model the sample is treated as consisting out of n two-dimensional virtual
layers Oi containing the structural information of the sample, which could be
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Figure 2.2: BSE image formation. A, MC calculations of maximum penetration depth
in Au of BSEs. B, Cartoon of imaging a buried particle at various Vacc.

imaged if the other layers where absent. Furthermore, it is assumed that the
image formation is linearized, meaning that a BSE image YVacc(x, y) contains
a weighted linear mixture of all these layers Oi’s and that the convolution
is limited to a blurring in the Z-direction. In this way the virtual layers are
the deconvolved BSE images whose linear superposition forms the acquired
multi-energy BSE images. The image formation can then be described by:

YVacc(x, y) = h1,VaccO1 + h2,VaccO2 + · · ·+ hn,VaccOn (2.4)

where hi,Vacc are the mixing weight factors[12–14, 36]. By taking n BSE im-
ages at various Vacc the image formation reduces in matrix form to YL =
HLOL, where the entries of HL contain hi,Vacc and both YL and OL are vec-
tors whose entries contain respectively the acquired multi-energy BSE images
and the deconvolved BSE images.

Equation 2.4 can be solved by deconvolution techniques. In the case of
MEDSEM, both HL and OL are unknown and the problem is solved by a
BSS algorithm. As an illustration of the nontriviality of an ill-posed BSS
problem, consider xy = 1. Is there a solution that corresponds to the ‘true’
solution of x and y? The task is now to estimate both HL and OL from YL
subject to a certain noise model to reconstruct the interior of the sample in
3D. This can be achieved by several methods such as independent compo-
nent analysis[37], sparse principal component analysis[38] and non-negative
matrix factorization[39]. The latter has been successfully used by D.A. Fish
et al. (1994) for the blind deconvolution of images blurred by a PSF based on
the Expectation Maximization Maximum Likelihood (EMML) algorithm[40].
This algorithm was chosen for the deconvolution of the acquired BSE images
due to its widespread popularity for solving problems very similar to the
image formation in MEDSEM.
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2.3 The EMMLTV Algorithm
The EMML algorithm provides an approximate maximum likelihood solution
to the BSS problem of the assumed instantaneous mixing image formation
in MEDSEM. In the EMML algorithm the data YL, which is the number of
detected BSEs per pixel per scan time interval per Vacc, is modeled as inde-
pendently distributed random variables subject to Poisson noise[41]. Given
this model, the estimators HL and OL that best fit YL can be derived from
statistical principles[41–43].

The EMML algorithm introduces noise on the deconvolved BSE images
that gets amplified if the algorithm runs for long iteration times. This can be
reduced by implementing the Total Variation (TV) regularization[44, 45].
The TV regularization was introduced by Catté et al. (1992) as a con-
strained optimization type for denoising images[46]. When incorporated into
the EMML algorithm the TV regularization acts as a regularization method
on the gradient of the image and removes noise in homogeneous regions while
preserving edges. The resulting EMMLTV algorithm solves in an iterative
manner the assumed image formation YL = HLOL for the estimators OL and
HL from some initialization as given by[43]:

OL = OL.×HT
L (YL./HLOL)./(1− λTV (OL))

HL = HL.× (((YL./HLOL)α)OT
L)ω/α) (2.5)

where point wise multiplication and division denote element wise operations
between matrices and vectors, the superscript T denotes the transpose op-
eration, the TV (O) term stands for the calculation of the TV regularization
term, λ is the regularization parameter that determines the strength of the
regularization, ω = 1.9 is an acceleration exponent to speed up the conver-
gence of the solution[47] and α = 2 is a relaxation parameter to improve
the stability of the algorithm[48]. An informal derivation of the EMMLTV
algorithm is given in Appendix A.

The EMMLTV algorithm achieves the SEM equivalence of optical sec-
tioning methods and enables, under the assumption of the instantaneous
mixing model of the image formation, a simple 3D imaging method in the
SEM. It does this by simultaneously solves YL for both the maximum likeli-
hood estimators OL andHL by alternately computing OL with knownHL and
HL with known OL until convergence is met. The result is that the acquired
multi-energy BSE images are deblurred along the Z-axis. Then, the decon-
volved BSE images are the reconstructed depth slices that contain structural
information of subsurface layers of the imaged sample, although the reached
depth as function of Vacc is not yet properly calibrated.
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Chapter 3

Methods of MEDSEM

3.1 Sample Set
All samples that are suited for imaging in an ordinary electron microscope
can also be imaged with MEDSEM. However, samples that are very thick
and that contain features deeply buried under the surface cannot be prop-
erly with MEDSEM, since the BSEs cannot access these regions at even the
highest Vacc. Therefore, a limiting condition is that the samples should not
have a structure that varies on large length scales in depth. As a general rule
of thumb, samples are restricted by a maximum thickness of around 200 nm,
although the actual maximum probing depth also depends on the average
density of the material[33–35]. Furthermore, the samples should have some
varying structure along the z-direction. Without this the acquired multi-
energy BSE images do not contain varying depth information and the de-
convolution becomes meaningless. This is also necessary for comparing the
deconvolved BSE images with FIBSEM to inspect whether the MEDSEM
output agrees with the actual 3D structure of the material and for calibrat-
ing the probed depth as function of Vacc.

The samples that fulfil the mentioned conditions and that were chosen
for this study are Ag@Cu2O core-shell nanowires fabricated in solution as
reported by Sciacca et al. (2014)[49] and Au@Cu2O core-shell nanowires fab-
ricated in solution as reported by Kuo et al.[50, 51]. In addition, the synthesis
of the Au@Cu2O core-shell nanowires also contains Au sheets as by-products.
These are also included in this study in order to try to image particles lying
underneath them. After fabrication, the samples are drop-casted on marked
Si substrates and imaged in the MEDSEM.
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3.2 MEDSEM Workflow
The imaging of nanostructures was performed on a Verios XHR SEM from
FEI. For imaging in the BSE mode it contains a Through-the-Lens-Detector
(TLD), In-the-Column-Detector (ICD), Mirror-Detector and Concentric-BackScatter
Detector (CBSD), which are all indicated in Figure 3.1.

Figure 3.1: BSE detectors. A, Verios XHR SEM. B, BSE detectors in the pole piece.
The ETD is a secondary electron detector, the STEM3 a transmission electron detector
and the DBS stands for the CBSD. C, Location of the ICD.

The workflow of MEDSEM consists out of three steps: acquiring multi-
energy BSE images, the deconvolution thereof and the visualization of the
deconvolved BSE images. The data acquisition takes place at the most op-
timal conditions for the electron beam current Ibeam, pixel dwell time τdwell,
pixel size, Vacc range and the number of frame integrations. At these settings
the signal-to-noise ratio (SNR) should be sufficiently high while the sample
damage is tried to keep minimal. Then, the acquired BSE images are aligned
with the FIJI stackreg plugin[52]. The deconvolution is then performed with
Matlab by the update rules of equation 2.5. Finally, the deconvolved BSE
images are visualized with both MATLAB and FIJI.

The EMMLTV algorithm will be run for a varying number of iterations
k and regularization strengths λ for all acquired BSE images to find the
optimal deconvolution settings. These are found from the Frobenius norm
||YL−HLOL||F and the estimated SNR of the deconvolved BSE images at all
[k, λ] algorithm state points, as shown in Figures 3.2 A and B. The SNR is es-
timated by applying a 3D-bilateral filter to the deconvolved BSE images[53]
and assuming that the filtered deconvolved BSE images, OL,filt, are the noise-
less signals. Then, the SNR is defined as the ratio between the mean of the
filtered signal to the standard deviation of the unfiltered signal:

SNR =
||OL,filt||F
||OL,filt −O||F

(3.1)

From a fast convergence of the Frobenius norm, a high SNR and observing
the deconvolved depth slices by eye are the optimal deconvolution settings
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determined. An example of how several of these act on the deconvolved BSE
image of an AgCu2O core-shell nanowire at Vacc=16 kV is shown in Fig-
ures 3.2 C–F. Figure 3.2 C shows the deconvolved BSE image for k=75 and
λ=10−3, the optimal deconvolution settings for this particular sample. Fur-
thermore, Figure 3.2 D shows the result for k=300 and λ=0, which becomes
dominated by noise and k is too high. Figure 3.2 E shows how the noise can
be significantly reduced by applying the TV regularization for k=300 and
λ=10−3. However, Figure 3.2 F shows the result for k=75 and λ=0.1, which
is distorted by the strong TV regularization and λ is too high.

Figure 3.2: The effects of the deconvolution settings. A, Estimated SNR. B, ||Y −HO||F .
C, Deconvolved BSE image for k=75 and λ=10−3. D, Deconvolved BSE image for k=300
and λ=0. E, Deconvolved BSE image for k=300 and λ=10−3. F, Deconvolved BSE image
for k=75 and λ=0.1.

Finally, FIBSEM cross cuts are taken of the samples imaged with MED-
SEM. This was done on a Helios NanoLab DualBeam FIB from FEI. By
comparing the FIBSEM cross cut with the deconvolved BSE images can the
quality of the latter be evaluated, the artifacts introduced by the deconvolu-
tion identified and the limits of 3D imaging with MEDSEM determined.
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Chapter 4

3D Imaging with MEDSEM

First, a broad overview of imaging Ag@Cu2O core-shell nanowires in 3D
with MEDSEM is presented and discussed, together with the main artifacts
present in the 3D images and the limited resolving power of MEDSEM. This
is followed by presenting and discussing the best MEDSEM results on an
Au@Cu2O core-shell nanowire and Au@Cu2O core-shell nanoparticles lying
underneath Au sheets. Volume rendered movies of the 3D data of the samples
presented in this chapter can be found on http://www.amolf.nl/to_be_
updated.

4.1 Ag@Cu2O Core-Shell Nanowires

Figure 4.1: BSE images of an Ag@Cu2O core-shell nanowire. Top row: images obtained
with the TLD, bottom row: images obtained with the MD. The columns indicate the applied
Vacc.

An Ag@Cu2O core-shell nanowire was imaged in the BSE mode for var-
ious Vacc. The images were obtained at 20 equally spaced Vacc in the range
Vacc=4–23 kV with both the TLD and MD for Ibeam=0.40 nA, τdwell=0.60
µs, 8 integrated frames and a pixel size of 1.70× 1.70 nm2. Figure 4.1 shows
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both the TLD and MD BSE images at Vacc=4, 8 and 17 kV, of which the
BSE images at high Vacc reveal contrast between two regions. This effect is
much stronger for the MD than the TLD.

Figure 4.2: The backscatter coefficient over simulated and real nanowires. The green
and blue dashed lines respectively indicate the edge of the shell and core of the simulated
Ag@Cu2O core-shell nanowire. A, Vacc=4 kV. B, Vacc=8 kV. C, Vacc=17 kV. D, Exper-
imental line profiles over an AgCu2O nanowire at various Vacc.

To validate whether this observed contrast is indeed due to the chem-
ical difference between the core and shell of the nanowire, MC calculations
of the backscatter coefficient of an Ag nanowire, a Cu2O nanowire and an
Ag@Cu2O core-shell nanowire were performed. A total of 100 scan points
spaced 2 nm over the nanowire were simulated with 5000 primary beam
electrons for each. The MC calculations were then compared with the exper-
imental backscatter coefficient over the long red scale bar in Figure 4.1 and
shown in Figure 4.2. At Vacc=4 kV, Figure 4.2 A shows that the backscatter
coefficient along the whole Ag@Cu2O core-shell nanowire is identical to that
of the Cu2O nanowire. The sharp peaks along the nanowires arise from the
polyhedral shape of the defined geometry of the nanowires. Increasing Vacc
to 8 and 17 kV results in an identical backscatter coefficient in the regions
between the blue and green dashed lines, the shell region of the Ag@Cu@O
core-shell nanowire, for both the Ag@Cu2O and Cu2O nanowires. However,
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the core region displays a significantly increased backscatter coefficient, al-
most reaching that of the Ag nanowire. This steep increase of the backscatter
coefficient is also present in the experimental line profiles for Vacc= 8 and 17
kV between the blue lines. Given the results of the MC calculations, this
indicates that there the composition also contains Ag and that the contrast
at high Vacc arises from the presence of the Ag core within the nanowire.
Therefore, at high Vacc the nanowire’s depth structure can be probed, since
then the BSEs have sufficient energy to penetrate through the shell.

After acquiring multi-energy BSE images the EMMLTV deconvolution
algorithm of Equation 2.5 was applied. This was only done for the images ob-
tained with the MD, since the TLD did not provide good elemental contrast.
Then, the SNR and ||Y − HO||F were quantified for various regularization
strengths λ and iteration lengths k. From the procedure described in Sec-
tion 3.2 the optimal deconvolution settings were determined to be k=75 and
λ=10−3. To visualize the effect of the deconvolution, both the acquired and
deconvolved BSE images were stacked on top of each other and cut along
either the X or the Y-axis with their gray values inverted and converted to a
heat map as shown in Figures 4.3 A–D. A low intensity (black) corresponds
to a high backscatter coefficient and all the uncut transparent regions con-
tain the signal from the Si substrate. Furthermore, the XZ and YZ cross
cuts of both the acquired and deconvolved BSE images are shown in Figures
4.3 E and F. A FIBSEM cross cut was obtained along the YZ cross cut of
Figure 4.3 F and shown in Figure 4.3 G to observe whether the deconvolved
BSE images contain depth information that corresponds with the nanowires
actual 3D structure. This allowed the determination of the probing depth of
the deconvolved BSE images, which is shown in Figure 4.3 H. Then, Figure
4.3 I contains the YZ cross cut of the deconvolved BSE images rescaled along
the Z-direction.

The effect of the deconvolution is a sharper separation of the core from
the shell. Figures 4.3 A and C show that the acquired BSE images contain
a dark region in the middle of the nanowire, corresponding to the Ag core.
Figures 4.3 B and D show that this region becomes more well-defined with
sharper core-shell interfaces after the deconvolution, indicating more clearly
the transition from core to shell within the nanowire’s interior. In addition,
the deconvolved BSE images show the top part of the Ag core as having
a triangular structure. This can also be seen on the acquired BSE images,
though there the effect seems to be less clear. Furthermore, both the core and
the shell display a slight narrowing on the bottom acquired and deconvolved
BSE images. However, both regions do not fully close. Again, this effect is
more clear for the deconvolved BSE images. These observed features of the
core-shell interface after the deconvolution are also present in the YZ cross
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cut in Figure 4.3 F.
The FIBSEM cross cut shows that the deconvolved BSE images contain

depth information that qualitatively agrees with the actual 3D structure of
the nanowire. Figure 4.3 G shows that the Ag core has a pentagonal struc-
ture. This indicates that the deconvolution correctly retrieved the top part
of the Ag core’s structure. However, the deconvolution could not retrieve
the bottom part of the Ag core and the Cu2O shell. Presumably the largest
Vacc is too low for the BSEs to fully penetrate through the nanowire and
the deconvolved BSE images cannot reconstruct the bottom of the nanowire.
Increasing Vacc could provide the sufficient energy to image the nanowire’s
bottom parts in more detail. This puts a limit on the achievable depth infor-
mation that can be retrieved from a deconvolution of the BSE images.

The determination of the probing depth as function of Vacc was done
by matching by eye the deconvolved BSE images with the structure of the
Ag core on the FIBSEM cross cut. More specifically, the deconvolved BSE
image showing the top of the Ag core, the widest part of the Ag core and the
last deconvolved BSE image were put on the corresponding depths on the
FIBSEM cross cut. Then, the missing voxels were obtained by interpolation
from the other deconvolved BSE images. From this, it was found that the
deconvolved BSE image at Vacc=5 kV, which corresponds to the first signal
of the Ag core, lies approximately at a depth of 20 ± 5 nm as measured
from the top of the nanowire. Furthermore, the deconvolved BSE image at
Vacc=12 kV, which corresponds to the widest part of the core, lies at a depth
of 60± 10 and the final deconvolved BSE image at acc=23 kV corresponds to
a depth of 110±20. From this analysis, the average obtained resolution in the
Z-direction in the Ag core is estimated by dividing the total depth covered by
the deconvolved BSE images of the Ag core by their number. This gives an
estimated Z-resolution of ∼ 5±1 nm and a voxel size of ∼ 1.70×1.70×5nm3.

Above values are crude estimations and an improved determination of
the Z-resolution, together with a larger resolution, could be obtained from
acquiring more BSE images at smaller Vacc increments in a wider Vacc range.
This would allow a more precise localization of features in 3D, since smaller
transitions will be possible to observe on the acquired, and therefore as well
on the deconvolved BSE images. Furthermore, increasing Vacc to higher val-
ues is necessary to probe deeper into the nanowire for a more complete 3D
reconstruction thereof.

Another demonstration of probing the interior of a nanowire from BSE
images is presented in Figure 4.4, which shows the MEDSEM results of a
thicker Ag@Cu2O core-shell nanowire with a core diameter of 180 nm and
outer diameter of 270 nm was imaged. The unscaled deconvolved BSE images
are visualized in Figures 4.4 A–C in the same way as in Figures 4.3 B and
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Figure 4.3: BSE imaging of the 3D structure of an Ag@Cu2O core-shell nanowire. A,
Acquired BSE images cut along the X-axis. B, Deconvolved BSE images cut along the
X-axis. C, Acquired BSE images cut along the Y-axis. D, Deconvolved BSE images cut
along the Y-axis. E, The XZ and YZ cross cuts of the acquired BSE images. F, The XZ
and YZ cross cuts of the deconvolved BSE images. G, FIBSEM cross cut of the nanowire
along the YZ cross cut. H, Depth probing from the top of the nanowire as function of
Vacc. I, The YZ cross cut of the deconvolved BSE images rescaled along the Z-direction
according to the probing depth relationship.
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D, but then also cut along the Z-axis. To enhance the visualization of the
Ag core, Figure 4.4 D contains isosurfaces that match the intensities of the
Cu2O shell, in green, and the Ag core, in blue. After the deconvolution, the
core-shell interface becomes clear in 3D. Furthermore, since this nanowire is
thicker than the previous one, depth information can only be obtained of the
top part of the nanowire. More importantly, Figures 4.4 B–D show that the
Ag core is partially absent in the wire, demonstrating the potential of vol-
umetric chemical characterization of nanostructures from deconvolved BSE
images.

Figure 4.4: BSE imaging of the 3D structure of a thick Ag@Cu2O core-shell nanowire.
A, Deconvolved BSE images cut along the X-axis. B, Deconvolved BSE images cut along
the Y-axis. C, Deconvolved BSE images cut along the Z-axis. D, Computed isosurfaces
that match the Ag core and the Cu@O shell.

In both presented examples MEDSEM provides qualitative depth in-
formation of the top part of the nanowire that does not match its true 3D
structure. Figure 4.3 G shows that nanowire’s shell also has a pentagonal
shape, which could not be retrieved by the deconvolution. There, the top de-
convolved BSE images contain strong signals on the edges of the wire where
no material should be present. This is a reconstruction artifact that arises
from the way in which surface topography is imaged in BSE images.

When the primary beam moves over the sample it cannot discriminate
between local height differences thereof. This stems from the good focal depth
of a SEM. As a consequence, any height differences in the surface topography
are projected on a flat 2D image and essentially lost. This means that at low
Vacc the acquired BSE images contain a projection of the nanowire’s surface
over the whole diameter instead of only the top part. The result is that the
top deconvolved BSE images contain features at the outer parts of the wire
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Figure 4.5: Resolving the surface topography artifact. A, MC calculation of electron
trajectories at Vacc= 3 kV. B, MC calculation of electron trajectories at Vacc= 6.5 kV.
C, Simulated backscatter coefficient over an embedded Ag@Cu22O core-shell nanowire. D,
Simulated backscatter coefficient over an embedded Cu22O nanowire. E, The XZ and YZ
cross cuts of the acquired BSE images of an Ag@Cu22O core-shell nanowire embedded in
silica sol-gel. F, The XZ and YZ cross cuts of the deconvolved BSE images of that same
nanowire.

where none should be. It is possible to reduce this artifact by embedding the
nanowires in a matrix of a different material.

An embedding matrix functions to uniformly slow down the beam at all
scan points. Figure 4.5 A and B show MC calculations of electron trajecto-
ries (BSEs are red) in a sample containing an Ag@Cu22O core-shell nanowire
(blue is Ag, green is Cu2O) on a Si substrate (orange) embedded in a silica
sol-gel matrix (gray) at respectively Vacc=3 kV and Vacc=6.5 kV. In the for-
mer the primary beam penetrates only into the top region of the matrix
from which the BSEs emerge, whereas in the latter the beam just reaches
the top of the nanowire. Then, only the top part of the whole nanowire emits
BSEs, whereas all other scan points still produce a background signal of the
matrix. By increasing Vacc in small steps the imaged part of the nanowire
widens, since then BSEs can increasingly penetrate deeper into the matrix
and cover more of the nanowire’s surface. This is illustrated in Figures 4.5 C
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and D, which contain the simulated backscatter coefficient for Vacc=3–13 kV
at 0.25 kV increments over respectively an Ag@Cu2O core-shell and Cu2O
a nanowire. Upon increasing Vacc above 6.5 kV, the evolution of the surface
topography of the nanowire becomes visible as function of Vacc. In addition,
the presence of the Ag core in the core-shell nanowire could then still be
detected as the increased signal in the core region between the white lines in
Figure 4.5 C, which is absent in Figure 4.5 D.

However, experimental attempts at removing the topography artifact
were unsuccessful. Three embedding matrices were tried: silica sol-gel, Poly(3,4-
ethylenedioxythiophene) Polystyrene sulfonate (PEDOT:PSS) and Poly(methyl
methacrylate) (PMMA). Layers with a thickness of 200–600 nm were spin
coated on samples containing Ag@Cu2O core-shell nanowires. Figure 4.5 E
and F show respectively 22 acquired and deconvolved BSE images at equally
spaced Vacc in the range Vacc= 3–24 kV together with their XZ and YZ cross
cuts. The YZ cross cuts provide an improved representation of the nanowire’s
surface topography, the XZ cross cuts indicate that the left part of the wire
is buried more deeply in the matrix. However, the silica sol-gel matrix is non-
conductive and most of the electrons remained trapped in the matrix, leading
to the build-up of negative charge followed by image distortion effects[54] and
even to sample damage. This could not be prevented by acquiring many in-
tegrated frames at low Ibeam and τdwell. Both the PMMA and PEDOT:PSS
matrix, of which the latter is conductive, proved to be unstable under pri-
mary beam exposure. This resulted in the matrix being destroyed during
the imaging process, thereby inducing nanowire drift and image distortion.
Furthermore, embedding the nanowires in any matrix reduces the obtainable
resolution, since the electron beam becomes more diffuse prior to reaching
the nanowire due to scattering events in the matrix. However, a stable, con-
ducting, light and flat matrix could reduce the surface topography artifact
and provide better depth information of a nanowire’s 3D structure from BSE
images.

In conclusion, qualitative depth information of the Ag core in an Ag@Cu2O
core-shell nanowires was obtained from applying a deconvolution to BSE im-
ages while assuming an instantaneous mixing image formation model. The
deepest probed depth was 110± 20 nm at Vacc=23 kV, which was limited by
the thickness of the wires. The resolution in the Ag core in the Z-direction
was estimated at ∼ 5 nm. Furthermore, reconstructing the true surface to-
pography of the nanowire was unsuccessful due to the identified topography
artifact. Finally, strategies were proposed to improve both the resolution and
to resolve the topography artifact.
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4.2 Au@Cu2O Core-Shell Nanowire
In addition to the Ag@Cu2O core-shell nanowire, a smaller Au@Cu2O core-
shell nanowire was imaged with MEDSEM. In total 35 BSE images were
obtained at steps of 0.5 kV in the range Vacc= 2–15 and steps of 1 kV in the
range Vacc=15–23 kV kV with the MD for Ibeam=0.10 nA, τdwell=0.90 µs, 8
integrated frames and a pixel size of 0.84×0.84 nm2. Figures 4.6 A, B and C
show respectively the BSE image at Vacc=3 kV, which only contains the BSE
signal of the Cu2O shell of the nanowire, at Vacc=11.5 kV, which shows the
Au core, and at Vacc=18 kV, which has a lower intensity, indicating that the
nanowire starts to become transparent for the primary beam. The optimal
deconvolution settings were k= 75 and λ=10−2.5. The results are shown in
Figures 4.6 D, E, F and G, where the acquired and deconvolved BSE images
were stacked on top of each other and cut along the X- and Y-axis with their
gray values inverted and converted to a heat map. This is followed by the XZ
and YZ cross cuts of the acquired and deconvolved BSE images in Figures
4.6 H and I. Figure 4.6 J shows a FIBSEM cross cut obtained along the YZ
cross cut. This was compared with the obtained depth information from the
deconvolved BSE images to determine the depth probing thereof, as shown
in 4.6 K. Finally, the deconvolved BSE images were rescaled in depth, as
shown in Figures 4.6 L.

The deconvolution of the BSE images provides depth information of
the nanowire’s inner structure. Figures 4.6 A–C demonstrate that the Au
core within the nanowire can be observed at high Vacc. Figures 4.6 D–G
show that the first few acquired and deconvolved BSE images contain only
the signal originating from the Cu2O shell. From the BSE images at higher
Vacc, the deconvolution reconstructs the interior of the nanowire from the
blurred combination of the Au core and Cu2O shell along the Z-direction on
the acquired BSE images. More specifically, the deconvolution separates the
core from the shell in 3D and the core-shell interfaces become well-defined,
localized in space and clearly visible. In these graphs, a black and dark red
intensity correspond to signal from the Au core. At high Vacc the nanowire
becomes narrower on the acquired acquired BSE images and the core intensity
drops, but does not fully close. On the deconvolved BSE images, the top of the
core appears at Vacc=5.5 kV and both the bottom of the core and the shell
close at respectively Vacc=14.5 kV and Vacc=19 kV. The final deconvolved
BSE images at Vacc  20 kV only contain a background signal from the
substrate and noise. The core-shell interface and the closing of the bottom
part of the nanowire can also be observed in the XZ and YZ cross cuts of
Figures 4.6 H and I.

The FIBSEM cross cut of Figure 4.6 J shows that the obtained 3D depth
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Figure 4.6: BSE imaging of the 3D structure of an Au@Cu2O core-shell nanowire. A,
Acquired BSE image at Vacc=3 kV. B, Acquired BSE image at Vacc=11.5 kV. C, Acquired
BSE image at Vacc=18 kV. D, Acquired BSE images cut along the X-axis. E, Deconvolved
BSE images cut along the X-axis. F, Acquired BSE images cut along the Y-axis. G,
Deconvolved BSE images cut along the Y-axis. H, The XZ and YZ cross cuts of the
acquired BSE images. I, The XZ and YZ cross cuts of the deconvolved BSE images. J,
FIBSEM cross cut of the nanowire along the YZ cross cut. K, Depth probing from top
of the nanowire as function of Vacc. L, The YZ cross cut of the deconvolved BSE images
rescaled along the Z-direction according to the probing depth relationship.
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information of the nanowire from the deconvolved BSE images qualitatively
agrees with its actual structure. The core-shell structure and its interface,
as retrieved from the deconvolution, is present in the FIBSEM cross cut.
However, the topography artifact is present and on the top deconvolved BSE
images it appears as if a flat Cu2O shell spans the whole diameter of the
wire, whereas the FIBSEM cross cut indicates a triangular top structure of
the shell. Correcting for this topography artifact, as mentioned in section 4.1,
could yield a more correct reconstruction of the top structure of the shell to
improve the quality of the 3D image from the deconvolution of BSE images.

Both the probing depth of the deconvolved BSE images as function of
Vacc and estimated depth resolutions were determined from the FIBSEM
cross cut. This is done by matching the deconvolved BSE images with the
top and bottom of the Au core and with the bottom of the nanowire. A
rescaled 3D image is then obtained by interpolating the missing voxels from
the deconvolved BSE images. It was found that the deconvolved BSE image
at Vacc=5.5 kV lies at a depth of 36.0 ± 5.0 nm as measured from the top
of the nanowire, the deconvolved BSE image at Vacc=14.5 kV lies at a depth
of 70± 5 nm and the deconvolved BSE image at Vacc=19 kV lies at a depth
of 98.0± 10.0 nm. From these values the resolution in the Z-direction of the
deconvolved BSE 3D image was estimated in the regions of top part of the
the shell, the core, and the bottom part of the shell in the same manner as
in Section 4.1. The top part of the shell has an estimated Z-resolution of
∼ 4.5 ± 1.0 nm, the core has an estimated Z-resolution of ∼ 2.0 ± 0.5 nm,
and bottom part of the shell has an estimated Z-resolution of ∼ 5.6 ± 1.0
nm. As was the case with the Ag@Cu2O core-shell nanowire, the estimated
resolutions could be improved by acquiring more BSE imagese at smaller Vacc
increments over a wider Vacc range.

In conclusion, structural information of the interior of an Au@Cu2O
core-shell nanowire was obtained from the deconvolved BSE images. This
allowed the reconstruction of both the core-shell interface of the nanowire
and the full nanowire in 3D, albeit the top part of the shell is incorrectly
reconstructed due to the topography artifact. From a FIBSEM cross cut
it was observed that these features agree qualitatively with the actual 3D
structure of the nanowire. Furthermore, an estimated depth resolution of
∼2–5 nm was achieved. Finally, the quality and Z-resolution of the 3D image
obtained from the deconvolved BSE images could be improved by correcting
for the topography artifact and by acquiring BSE images at a better tailored
Vacc range.
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4.3 Imaging through Au Sheets
More complex layered samples were tried to image in 3D with MEDSEM to
test its depth probing limits. A first sample is an Au nanowire lying under-
neath an Au sheet. In total 26 BSE images were obtained at equidistant Vacc
in the range Vacc=2–28 kV with the MD for Ibeam=0.10 nA, τdwell=0.90 µs,
8 integrated frames and a pixel size of 2.24 × 2.24 nm2. Figures 4.7 A and
B show respectively the acquired BSE images at Vacc=2 kV and Vacc=28 kV,
where the latter shows Au particles and an Au nanowire lying underneath
the sheets, as well as multiple sheets stacked on top of each other. The op-
timal deconvolution settings were k=150 and λ=10−3. Due to the difficulty
of volume rendering the data because of the sheet on top of the Au sheet
samples, 3D images of the deconvolved BSE images were omitted. However,
an example of an Au nanowire imaged through an Au sheet was shown in
Figure 1.2 F. The XZ and YZ cross cuts of the acquired and deconvolved
BSE images are shown in Figures 4.7 C and D. Finally, a FIB cross cut was
taken along the YZ crosscut and compared with the YZ cross cut of the de-
convolved BSE images in Figure 4.7 E.

The effect of the deconvolution for this sample is to separate the Au
sheet from the Au nanowire and the background. Both cross cuts in Figure
4.7 C show that all the acquired BSE images contain a blurred contribution
of the signal from the Au sheet. However, the XZ and YZ cross cuts of Figure
4.7 D show that the deconvolved BSE images contain a clear separation be-
tween the Au sheet and the substrate underneath it, as indicated by a sharp
transition from high (white) to low (black) intensity. On these, the Au sheet
is present from the first deconvolved BSE image till the deconvolved BSE
image at Vacc=9 kV. The deconvolved BSE images for Vacc  9 kV do not
contain a contribution of the Au sheet anymore. Furthermore, the deconvo-
lution indicates that the thickness of the Au sheet does not vary significantly
along both the XZ and YZ cross cuts, since the intensity transition occurs
at the deconvolved BSE image at either Vacc=8 kV or Vacc=9 kV. Large local
variations should be possible to observe by observing the intensity transition
on the deconvolved BSE images for different Vacc. In addition, the YZ cross
cut in Figure 4.7 D shows the separation between the Au sheet and the Au
nanowire for Vacc=8–9 kV. This Vacc at which the separation occurs is the
same along the nanowire. Finally, the separation becomes more sharper on
the deconvolved YZ cross cut than on the acquired YZ cross cut.

The FIBSEM cross cut in Figure 4.7 E shows that the nanowire indeed
lies underneath the Au sheet. Furthermore, the FIBSEM cross cut indicates
that the Au sheets has a constant thickness along the cross cut. The probed
depth through the Au sheet is 15 ± 2 nm at Vacc=9 kV. However, the Au
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Figure 4.7: Imaging through an Au sheet. A, BSE image at Vacc=2 kV. The scale bar
is 200 nm. B, BSE image at Vacc=28 kV. The red box indicates the region of interest of
the next sub-figures. C, The XZ and YZ cross cuts of the acquired BSE images. The cross
cuts are over the red lines. D, The XZ and YZ cross cuts of the deconvolved BSE images.
E, The YZ cross cut of the deconvolved stack (left) and the FIBSEM cross cut (right).
The scale bar is 50 nm.

sheet is curved and bends down in the left part of the FIBSEM cross cut,
which could not be observed from both the acquired and deconvolved BSE
images due to the flat projection of the structure on the BSE images.

To test the possibility of obtaining depth information from beneath a
thicker Au layer, Au@Cu2O core-shell nanoparticles lying underneath two Au
sheets both covered by a Cu2O shell were tried to image with MEDSEM. In
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Figure 4.8: Imaging through two Au sheets. Th scale bar is 200 nm. A, BSE image at
Vacc=2 kV. B, BSE image at Vacc=29 kV. The red box indicates the region of interest of
the next sub-figures. C, Top row, acquired BSE images at Vacc=4.5, 16 and 26 kV, bottom
row, deconvolved BSE images at the same Vacc’s. E, The XZ and YZ cross cuts of the
acquired BSE images. The cross cuts are over the red lines. F, The XZ and YZ cross cuts
of the deconvolved BSE images. E, The YZ cross cut of the deconvolved BSE images (left)
and the FIBSEM cross cut (right). The scale bar is 60 nm.

total of 28 BSE images images were obtained at steps of 0.5 kV in the range
Vacc=3–7 kV, steps of 1 kV in the range Vacc=7–20 kV and steps of 1.5 kV in
the range Vacc=20–29 kV with the inner ring of the CBSD for Ibeam=0.10 nA,
τdwell =0.60 µs, 8 integrated frames and a pixel size of 0.67×0.67 nm2. Figures
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4.8 A and B show the acquired backscattered electron images at respectively
Vacc=2 kV and Vacc=29 kV. At Vacc=2 kV, only the surface topography of the
sample is visible, whereas at Vacc=29 kV the second Au sheet and Au@Cu2O
core-shell nanoparticles and nanowires lying underneath either the first or
the second Au sheet can be seen. The optimal deconvolution settings were
k=125 and λ=10−2.5. A comparison between the acquired and deconvolved
BSE images at Vacc=4.5, 16 and 26 kV is shown in Figure 4.8 C. The XZ
and YZ cross cuts of the acquired and deconvolved BSE images are shown
respectively in Figures 4.8 D and E. Finally, a FIB cross cut along the XZ
cross cut is compared with the XZ cross cut of the deconvolved BSE images
in Figure 4.8.

In this case the deconvolution not only separates the Au sheet from the
structures underneath it, but also the two Au sheets from each other. Figure
4.8 C shows that the deconvolved BSE image at Vacc=16 kV only contains a
contribution of the bottom Au sheet, while the top sheet is still present on
the acquired BSE image. Furthermore, the second Au sheet is also removed
from the deconvolved BSE image at Vacc=26 kV, revealing the particles un-
derneath it, which appear sharper and more localized on the deconvolved
BSE image. This is better visualized in Figure 4.8 E, which shows the sharp
transition in intensity between the single top sheet and the substrate on the
both left part of the XZ cross cut and the bottom part of the YZ cross cut.
Furthermore, the regions where both Au sheets lie on top of each other show
an intensity drop when the first Au sheet becomes separated from the sub-
strate, followed by a sharp intensity transition from the bottom Au sheet to
the substrate at a higher Vacc. In contrast, Figure 4.8 D does not show these
sharp transitions on both cross cuts and the sheets appear blurred along the
Z-direction.

The FIBSEM cross cut in Figure 4.8 F shows that particles indeed lie
underneath two Au sheets and that the deconvolved BSE images allow the
reconstruction of the stacked structure in 3D. Furthermore, the top Au sheet,
which has total thickness of 40±5.0 nm and an Au thickness of 20±2.5 nm,
is removed at the deconvolved BSE image at Vacc=11 kV and the second Au
sheet, which has total thickness of 65±5.0 nm and an Au thickness of 30±2.5
nm, is removed at the deconvolved BSE image at Vacc=24.5 kV. Then, at
even higher Vacc’s the BSEs probe the core-shell particles through an Au and
Cu2O mixture with a total thickness of 105±10.0 nm. However, it is then not
possible anymore to observe the transition from core to shell of these, pre-
sumably because the beam broadening significantly blurs the acquired BSE
images and the deconvolution is not capable of retrieving interface features
hidden therein. This makes it also impossible to determine how deep the
backscattered electrons traveled into these particles.
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The 3D reconstruction from the deconvolved BSE images qualitatively
agrees with the actual 3D structure, but contains artifacts. Again, the FIB-
SEM cross cut shows that the curved geometry of the sheets could not be
retrieved by the deconvolution due to the topography artifact. Furthermore,
another artifact is visible in the top right part of Figures 4.8 C, D and E,
where an area that is only covered by the bottom Au sheet is reconstructed
as being very thick after the deconvolution. This part should become trans-
parent between Vacc=11 kV and Vacc=24.5 kV, since the FIBSEM cross cut
shows that it is thicker than the top sheet. The origin of this artifact re-
mains unclear and attempts at removing this have so far been unsuccessful.
A possible remedy could be a spatial-dependent PSF, since in the current
version of the algorithm the PSF is an average function over the whole sam-
ple that dictates the same mixing of deconvolved BSE images at all scan
points, whereas it is quite possible that the PSF is different for regions of
differing composition and height.

The final, and most complex, sample contains two differently size Au
sheets, both covered by a Cu2O shell, with Au@Cu2O core-shell particles
in between them. In total 34 BSE images were obtained at steps of 0.5 kV
in the range Vacc=2–10 kV, steps of 1 kV in the range Vacc=10–20 kV and
steps of 1.5 kV in the range Vacc=20–29 kV with the inner ring of the CBSD
for Ibeam=0.40 nA, τdwell=0.30 µs, 16 integrated frames and a pixel size of
1.1× 1.1 nm2. Figures 4.9 A and B show the acquired BSE images at respec-
tively Vacc=2 kV and Vacc=23 kV, of which the latter shows the rich variety
of nanoparticles, nanowires and sheets hidden underneath the top sheet. The
optimal deconvolution settings were k=125 and λ=10−2.5 and a comparison
between the acquired and deconvolved BSE images at Vacc=5.5, 21.5 and 29
kV is shown in Figure 4.9 C. The XZ and YZ cross cuts of both the acquired
and deconvolved image stacks are shown respectively in Figures 4.8 D and
E. Finally, a FIBSEM cross cut was taken along the horizontal red line of
Figure 4.9 D and compared with the XZ cross cut of the deconvolved BSE
images.

This sample was too complex for providing correct depth information
by MEDSEM. The cross cuts in Figure 4.9 E show a sharp drop in inten-
sity at the deconvolved BSE image at Vacc=10 kV, indicating the bottom of
the top Au sheet. From the FIBSEM cross cut its total thickness was deter-
mined at 15±3 nm with an Au thickness of 8±2nm. The FIBSEM cross cut
shows that this sample also has a top sheet with a curved geometry, which
could not be reconstructed on the deconvolved BSE images. Furthermore,
the XZ cross cut of the deconvolved BSE images for Vacc 10 kV does not
show a qualitative agreement with the FIBSEM cross cut. Another topogra-
phy artifact projects the particles as lying at the same depth as the bottom
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Figure 4.9: Imaging in between two Au sheets. A, BSE image at Vacc=2 kV. The scale
bar is 200 nm. B, BSE image at Vacc=23 kV. The red box indicates the region of interest
of the next sub-figures. C, Top row, acquired BSE images at Vacc=5.5, 21.5 and 29 kV,
bottom row, deconvolved BSE images at the same Vacc’s. D, The XZ and YZ cross cuts of
the acquired BSE images. The cross cuts are over the red lines. E, The XZ and YZ cross
cuts of the deconvolved BSE images. F, The YZ cross cut of the deconvolved BSE images
(left) and the FIBSEM cross cut (right). The scale bar is 200 nm.

sheet, whereas the FIBSEM cross cut demonstrates otherwise. In this case,
whenever the primary beam moves through the top sheet, BSEs emerge from
either the bottom sheet or a nanoparticle without discrimination between
which object lies higher than the other. However, upon increasing Vacc be-
yond 26 kV the primary beam penetrates through the bottom sheet, which
has total thickness of 50±5 nm and an Au thickness of 20±3 nm, at locations
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where no particles are present. The result is that the 3D reconstruction lo-
cally shows the correct separation of both sheets whenever particles between
them are absent, whereas at locations containing a particle the deconvolved
BSE images contain a distorted 3D structure. As a result, only qualitatively
correct information of the top sheet was obtained and the geometry of the
structures lying beneath the top sheet were too complicated for being cor-
rectly reconstructed by MEDSEM.

In conclusion, structures lying underneath Au sheets can be imaged with
MEDSEM. Furthermore, the deconvolution of multi-energy BSE images can
provide insight in the stacked order of sheet-particle and sheet-sheet-particle
geometries. In these systems, the deconvolution of multi-energy BSE images
can separate the sheets from each other and from the particles. This allowed
the visualization of particles lying underneath up to ∼100 nm of material for
Vacc 26 kV.

30



Chapter 5

Conclusions and Outlook

5.1 Conclusions
The work presented in this thesis demonstrates that non-destructive struc-
tural characterization and the retrieval of depth information of nanostruc-
tures becomes possible by applying MEDSEM, a simple SEM method that
only requires imaging in the BSE mode at different primary beam energies.
This can be realized by assuming an instantaneous mixing model for BSE
image formation and by accordingly applying a deconvolution to the acquired
multi-energy BSE images. While doing so, features that appear blurred along
the depth on the multi-energy BSE image stack can be resolved more in
clearly in a 3D reconstruction of the nanostructure. This is achieved for sev-
eral nanostructures.

First, the Ag core of an Ag@Cu2O core-shell nanowire can be visualized
with MEDSEM. It is possible to reveal the pentagonal structure of the top
of the core in 3D and to probe the nanowire’s interior down to a depth of
110 ± 20 nm by applying acceleration voltage’s Vacc in the range 4–23 kV.
Second, the core-shell interface of an Au@Cu2O core-shell nanowire together
with its full 3D structure, which has a height of 98 ± 10 nm, can be recon-
structed by MEDSEM at nanometer length scales by applying Vacc’s in the
range 2–24 kV. Finally, particles lying beneath either one or two sheets with
total thicknesses in the range 15–100 nm can be imaged with MEDSEM.

The results obtained with MEDSEM provide depth information that
qualitatively agrees with the actual structure obtained with FIBSEM cross
cuts. However, the topography of the nanostructures can not be correctly
reconstructed from the BSE images. A method to correct for this is to em-
bed the nanostructures in a matrix, such that local height variations of the
topography become visible on multi-energy BSE images.
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5.2 Outlook
This study presented the first steps towards the realization of non-destructive
3D imaging of nanostructures by MEDSEM. More importantly, possible fu-
ture improvements of the quality of MEDSEM were foreseen.

First, one could attempt to understand in more detail the fundamen-
tals of the image formation. For example, under what conditions does the
linearized image formation model hold and can the point-spread-function of
a system be determined a priori? Extensive MC calculations of BSE tra-
jectories in a variety of systems of varying compositions and geometries at
varying Vacc could provide more insight thereof. Furthermore, this could of-
fer a better justification for the usage of the EMMLTV algorithm or suggest
even more suited deconvolution techniques. Finally, obtaining a system’s PSF
from MC calculations will significantly reduce the complexity of the decon-
volution problem and could lead to the better retrieval of the 3D structure.

Furthermore, some next experimental steps should be carried out. A
first aim could be to try imaging a larger variety of nanostructures and com-
positions to determine to what extend depth information can be obtained
thereof. A second aim is to improve the depth resolution by acquiring more
BSE images at smaller increments over a wide Vacc range. In addition to this,
reaching Vacc’s up to 60 kV would fit in well with this approach and reaching
deeper probing depths could be a significant extension of MEDSEM. Finally,
more effort is required to resolve the topography artifact. This requires em-
bedding the nanostructures in a flat, light, conductive matrix that can slow
down the primary beam prior to landing on the sample. A combination of the
latter two could significantly improve the 3D imaging capabilities of MED-
SEM.

Finally, the deconvolution could be improved in multiple ways. For in-
stance, the EMMLTV algorithm estimates an average PSF over the whole
sample that dictates the same mixing at all voxels, whereas regions of dif-
ferent composition and height might have a different PSF. This could be
resolved by applying a position-dependent deconvolution that can decouple
the mixing process in various regions. However, this significantly increases
the computational cost, since then the deconvolution involves the fitting of
the 4-dimensional kernel. Another related improvement could be the intro-
duction of a spatially varying λ proposed by L. Yan et al. (2012)[55]. This
approach has the benefit that regions that need more TV regularization, such
as areas containing a lot of noise, get enough smoothing, whereas other re-
gions that do not require this will be less distorted.

However, the largest shortcoming of MEDSEM is the usage of a blind
deconvolution. This cannot guarantee that the obtained solution matches
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the true 3D structure of the sample. The simplest method of improving the
deconvolution is by reducing the ‘blindness’ of the problem by introducing
new information. This could be in the form of supplying the algorithm with
constraints on the geometry of the reconstruction from observed features of
the sample during the acquisition stage. For example, the sample could be
imaged under various tilting angles and the obtained 3D information of the
sample’s topography and surface structure could restrict possible outcomes
of the deconvolved BSE images. Furthermore, incorporation of the results
of MC calculations in the algorithm could serve the same goal, where MC
calculations of BSE trajectories performed on the deconvolved BSE images
could indicate whether the output is in agreement with the acquired BSE
images.

These discussed improvements could be combined in an ideal future
MEDSEM platform. Such a platform would provide the user with choice
on the deconvolution algorithm, or even an comparison between results of
various algorithms. Furthermore, the algorithm should contain self-learning
features that in a iterative manner compare deconvolution results with MC
simulations and vice versa, while allowing the user to either guess or define
geometries or chemical compositions of certain regions. Implementing these
could significantly enhance the quality of 3D imaging with MEDSEM.
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Appendix

Derivation of the EMMLTV Algorithm
This appendix contains a brief informal derivation of the EMMLTV algorithm
that is applied in MEDSEM to deblur the acquired BSE images along Z-
direction to estimate the interior of the imaged sample. This derivation is by
no means complete and only serves as an example of how, from statistical
principles, Equation 2.5 can be obtained. A complete and formal derivation
can be found in [43].

As discussed in Section 2.2, the formation of a BSE image is given by
the convolution:

YVacc(x, y) = HVacc(x, y, z) ∗O(x, y, z) (1)

where the data Y is modelled as independently distributed Poisson variables
Pois{HVacc(x, y, z)∗O(x, y, z)}[41]. From now on the PSF will be abbreviated
asH, which refers to the beam broadening in 3D as function of location in the
sample and Vacc. Then, the maximum likelihood of observing Y conditioned
on H ∗O is given by:

P (Y |H ∗O) =
∏
r

[(H ∗O)(r)]Y (r) e−(H∗O)(r)

Y (r)!
(2)

where the product extends over all the spatial indices r of the matrices Y, H
and O.

Minimizing the negative logarithm of Equation 2 with respect to H ∗O
corresponds to finding the most likely H ∗ O that could have generated the
observed data Y . The function to minimize then becomes:

− logP(Y |H ∗O) =
∑
r

[(H ∗O)(r)− Y (r) log((H ∗O)(r)) + log(Y (r)!)] (3)

The last term of Equation 3 drops out since it is constant with respect
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to H ∗O. Combining this with approximating the summation by an integral
over r gives, up to a multiplicative factor, the following cost function:

J =
∫
r
[(H ∗O)(r)− Y (r) log(H ∗O)(r)]dr (4)

Equation 4 needs to be minimized with respect to both H and O. As an
example of this procedure, consider a small matrix perturbation ρO′ in O.
The new cost function becomes:

J(O + ρO′) =
∫
r
[(H ∗ (O + ρO′))(r)− Y (r) log(H ∗ (O + ρO′)(r))]dr

∼= J(O) + ρ
∫
r

[
(H ∗O′)(r)− Y (r)(H ∗O′)(r)

(H ∗O)(r)

]
dr (5)

The derivative of J with respect to O, ∇OJ , is then, up to some nu-
merical factor, the difference between Equation 5 and Equation 4 for lim

O′→0
.

Algebraic manipulation then gives for ∇OJ :

∇OJ =
∫
r
H(−r)dr−H(−r) ∗ Y (r)

(H ∗O)(r)
(6)

Taking the value of the integral equal to 1 and solving for 0 yields:

H(−r) ∗ Y (r)
(H ∗O)(r)

= 1 (7)

Equation 7 can be solved in an iterative multiplicative manner by as-
suming that convergence occurs at Ok+1

Ok
= 1 for lim

k→∞
by:

Ok+1 = Ok

[
H(−r) ∗ Y (r)

(H ∗O)(r)

]
(8)

Equation 8 gives an iterative update rule of O that maximizes the max-
imum likelihood function as defined in Equation 2. By applying a matrix
perturbation to H in Equation 5 and repeating a similar minimization of J
with respect to H, the following iterative update rule of H can be found:

Hk+1 = Hk

[
Y (r)

(H ∗O)(r)
∗O(−r)

]
(9)
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Finally, Equations 8 and 9 can be rewritten in a matrix formalism cor-
responding to the linearized form of the BSS problem of image formation in
the MEDSEM:

OL = OL.×HT
L (YL./HLOL)

HL = HL.× (YL./HLOL)OT
L (10)

where point wise multiplication and division denote element wise operations
between matrices[48]. The EMML algorithm solves YL for both OL and HL

by alternately computing OL with known HL and HL with known OL from
some initialization until convergence is met.

Equation 10 is the unregularized EMML algorithm. The inclusion of the
TV regularization is achieved by adding a new term JTV to Equation 4:

J =
∫
r
[(H ∗O)(r)− Y (r) log(H ∗O)(r)]dr + λ

∫
r
|∇O(r)| dr

= J0 + JTV (11)

where λ is the regularization strength.
Since JTV is independent of H, it is only necessary to find a new update

rule for O by minimizing Equation 11 with respect to O. This is achieved by
applying a perturbation ρO′ to O in the JTV term of Equation 11 :

JTV (O + ρX ′) ∼= JTV (O)− ρλ
∫
r
div

(
∇O
|∇O|

)
X ′dr (12)

From Equation 12 it follows that the minimization of Equation 11 with
respect to O equals to solving:∫

r
H(−r)dr−H(−r) ∗ Y (r)

(H ∗O)(r)
− λdiv

(
∇O
|∇O|

)
= 0 (13)

Rearranging Equation 13 and solving it in an iterative multiplicative
manner yields the EMMLTV algorithm of O:

Ok+1 =
Ok

1− λdiv
(
∇O
|∇O|

) [H(−r) ∗ Y (r)
(H ∗O)(r)

]
(14)

The matrix form of Equation 14 is given by:

OL,TV = OL.×HT
L (YL./HLOL)./(1− λTV (OL)) (15)
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where the TV term stands for the discrete calculation of λdiv
(
∇OL
|∇OL|

)
. The

discrete computational implementation thereof is given by [43]. Note that this
algorithm for computing OL and HL does not contain the acceleration com-
ponent ω and acceleration parameter α that Equation 2.5 contains. Those
parameters were added for increased convergence speed and algorithm sta-
bility.
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