
TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

1

TEM help manual    --    Scripting 
 
Table of Contents 
 
1  TEM Scripting Software License Agreement ....................................................................................... 5 
2  TEM Scripting ...................................................................................................................................... 7 

2.1  Introduction .................................................................................................................................. 7 
2.1.1  Tem objects .............................................................................................................................. 7 

2.1.1.1  The ‘Instrument’ object .................................................................................................. 7 
2.1.1.2  The secondary microscope objects ............................................................................... 7 
2.1.1.3  The utility objects ........................................................................................................... 7 

2.1.2  TEM Scripting Features: ........................................................................................................... 8 
2.1.2.1  Synchronous functions .................................................................................................. 8 
2.1.2.2  Events ............................................................................................................................ 8 
2.1.2.3  TEM constants ............................................................................................................... 8 
2.1.2.4  TEM error codes ............................................................................................................ 8 

2.2  Testing your Scripting Programs .................................................................................................. 8 
2.3  A first example ............................................................................................................................. 9 
2.4  A second example (using utility objects) ...................................................................................... 9 
2.5  TEM modes ................................................................................................................................ 10 
2.6  Remote Scripting ........................................................................................................................ 10 

2.6.1  Specifying the microscope server ........................................................................................... 10 
2.6.2  Receiving events from a remote microscope server............................................................... 11 

3  The TEM Object Model ..................................................................................................................... 12 
3.1  The microscope objects ............................................................................................................. 12 
3.2  Utility objects .............................................................................................................................. 13 

4  The Instrument object ........................................................................................................................ 14 
5  The microscope objects .................................................................................................................... 16 
6  The Acquisition object ....................................................................................................................... 17 

6.1  Usage example in a pseudo-programming language................................................................. 18 
6.2  CCDCameras ............................................................................................................................. 19 

6.2.1  CCDCamera ........................................................................................................................... 19 
6.2.1.1  CCDCameraInfo .......................................................................................................... 20 
6.2.1.2  CCDAcqParams .......................................................................................................... 21 

6.3  STEMDetectors .......................................................................................................................... 22 
6.3.1  STEMDetectors ...................................................................................................................... 22 
6.3.2  STEMDetector ........................................................................................................................ 22 

6.3.2.1  STEMDetectorInfo ....................................................................................................... 22 
6.3.2.2  STEMAcqParams ........................................................................................................ 23 

6.4  AcqImages ................................................................................................................................. 23 
6.4.1  AcqImage ............................................................................................................................... 23 

6.5  Acquisition Constants ................................................................................................................. 24 
6.5.1  Enum AcqImageSize .............................................................................................................. 24 
6.5.2  Enum AcqImageCorrection .................................................................................................... 24 
6.5.3  Enum AcqShutterMode .......................................................................................................... 24 
6.5.4  Enum AcqExposureMode ....................................................................................................... 24 
6.5.5  Enum AcqImageFileFormat .................................................................................................... 25 
6.5.6  AsFile method ......................................................................................................................... 25 

6.6  SafeArray handling ..................................................................................................................... 25 
7  The AutoLoader object ...................................................................................................................... 27 

7.1  Cassette slot status constants ................................................................................................... 27 
7.1.1  Enum CassetteSlotStatus ....................................................................................................... 27 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

2

8  The BlankerShutter object ................................................................................................................. 28 
9  The Camera object ............................................................................................................................ 29 

9.1  Camera object constants ........................................................................................................... 29 
9.1.1  Enum ScreenPosition ............................................................................................................. 29 

10  The Configuration object ................................................................................................................... 30 
10.1  Configuration object constants ................................................................................................... 30 

10.1.1 Enum ProductFamily .............................................................................................................. 30 
10.1.2 Enum CondenserLensSystem ................................................................................................ 30 

11  The Gun object .................................................................................................................................. 31 
11.1  Gun object constants ................................................................................................................. 31 

11.1.1 Enum HTState ........................................................................................................................ 31 
12  The Illumination object ...................................................................................................................... 32 

12.1  Illumination object constants ...................................................................................................... 33 
12.1.1 Enum IlluminationMode .......................................................................................................... 33 
12.1.2 Enum CondenserMode (Titan only) ........................................................................................ 34 
12.1.3 Enum DarkFieldMode ............................................................................................................. 35 
12.1.4 Enum IlluminationNormalization ............................................................................................. 35 

13  The InstrumentModeControl object ................................................................................................... 35 
13.1  InstrumentModeControl object constants: .................................................................................. 35 

13.1.1 Enum InstrumentMode: .......................................................................................................... 35 
14  The Projection object ......................................................................................................................... 36 

14.1  Projection object constants ........................................................................................................ 39 
14.1.1 Enum ProjectionMode ............................................................................................................ 39 
14.1.2 Enum ProjectionSubMode ...................................................................................................... 39 
14.1.3 Enum LensProg ...................................................................................................................... 39 
14.1.4 Enum ProjectionDetectorShift ................................................................................................ 39 
14.1.5 Enum ProjDetectorShiftMode ................................................................................................. 39 
14.1.6 Enum ProjectionNormalization ............................................................................................... 40 

15  The Stage object ............................................................................................................................... 41 
15.1  StageAxisData object ................................................................................................................. 42 
15.2  Stage object constants ............................................................................................................... 42 

15.2.1 Enum StageStatus .................................................................................................................. 42 
15.2.2 Enum StageAxes .................................................................................................................... 42 
15.2.3 Enum StageHolderType ......................................................................................................... 43 
15.2.4 Enum MeasurementUnitType ................................................................................................. 43 

16  The TemperatureControl object ........................................................................................................ 44 
16.1  Refigerant level constants .......................................................................................................... 44 

16.1.1 Enum RefrigerantLevel ........................................................................................................... 44 
17  The UserButton object ....................................................................................................................... 45 
18  The Vacuum object ........................................................................................................................... 46 

18.1  Constants: .................................................................................................................................. 46 
18.1.1 Enum VacuumStatus: ............................................................................................................. 46 

19  The utility objects ............................................................................................................................... 47 
19.1  The Gauge (utility object) ........................................................................................................... 47 

19.1.1 Gauge object constants .......................................................................................................... 48 
19.1.1.1  Enum GaugeStatus: .................................................................................................... 48 
19.1.1.2  Enum GaugePressureLevel ......................................................................................... 48 

19.2  The StagePosition (utility object) ................................................................................................ 49 
19.3  The Vector (utility object) ........................................................................................................... 49 

20  TEM constants .................................................................................................................................. 50 
21  TEM error codes ................................................................................................................................ 51 

21.1  Enum TEMScriptingError: .......................................................................................................... 51 
22  TEM-specific issues .......................................................................................................................... 52 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

3

22.1  Synchronous functions ............................................................................................................... 52 
22.1.1 Automatic normalization ......................................................................................................... 52 
22.1.2 Pole touch ............................................................................................................................... 52 
22.1.3 Setting the high tension .......................................................................................................... 52 

22.2  Normalizations ........................................................................................................................... 52 
22.3  TEM sessions ............................................................................................................................. 53 
22.4  Setting parameters out of range ................................................................................................. 54 

23  Property- and function- types ............................................................................................................ 55 
24  TEM scripting in C++ ......................................................................................................................... 56 

24.1  Import the dynamic link library.................................................................................................... 56 
24.2  Create an ‘Instrument’ and get the secondary microscope object that you need....................... 56 
24.3  Manipulate and read microscope parameters, invoke microscope actions ................................ 57 
24.4  Use the collections ..................................................................................................................... 58 
24.5  Receive events from the user buttons ........................................................................................ 59 
24.6  Receive Events from a remote microscope server ..................................................................... 60 
24.7  Errors and error handling ........................................................................................................... 60 

25  TEM scripting in Delphi ..................................................................................................................... 62 
25.1  Introduction and package installation ......................................................................................... 62 
25.2  Events ........................................................................................................................................ 62 
25.3  Using the dynamic link library .................................................................................................... 62 
25.4  Example program ....................................................................................................................... 62 

25.4.1 Large fonts .............................................................................................................................. 63 
25.4.2 About box and Version number .............................................................................................. 63 

25.5  Create an ‘Instrument’ and get secondary microscope objects.................................................. 63 
25.6  Manipulate and read microscope parameters, invoke microscope actions ................................ 64 
25.7  Use the collections ..................................................................................................................... 64 
25.8  Receive events from the user buttons ........................................................................................ 66 
25.9  Receive events from a remote microscope server ..................................................................... 66 
25.10  Errors and error handling ........................................................................................................... 67 

26  TEM scripting in JScript ..................................................................................................................... 68 
26.1  Create the Instrument Object and get a secondary Microscope Object ..................................... 68 
26.2  Using Microscope Parameters and invoking actions.................................................................. 68 
26.3  Use the collections ..................................................................................................................... 69 
26.4  Receive events from the user buttons ........................................................................................ 70 
26.5  Errors and error handling ........................................................................................................... 71 
26.6  Image Acquisition ....................................................................................................................... 72 

26.6.1 Handling Array Data ............................................................................................................... 72 
26.6.1.1  Get Acquired Image as VARIANT ............................................................................... 72 
26.6.1.2  Get Camera Binnings as VARIANT ............................................................................. 73 
26.6.1.3  Get CCD Shutter Modes as VARIANT......................................................................... 74 
26.6.1.4  Get STEM Binnings as VARIANT ................................................................................ 74 
26.6.1.5  Get Acquired Image as File ......................................................................................... 74 
26.6.1.6  Normalizing the Acquired Image .................................................................................. 75 

26.6.2 Example Programs ................................................................................................................. 75 
26.6.2.1  CCD Acquisition Example ............................................................................................ 75 
26.6.2.2  STEM Acquisition Example ......................................................................................... 76 
26.6.2.3  CCD Acquisition and Display Example ........................................................................ 76 
26.6.2.4  Multiple CCD Acquisition and Display Example ........................................................... 77 

26.7  Example Programs ..................................................................................................................... 77 
26.7.1 Get/Set Image Beam Shift ...................................................................................................... 77 
26.7.2 Executing JScript code fragments .......................................................................................... 77 
26.7.3 Working with the Hand Panels ............................................................................................... 78 
26.7.4 Reading the Magnification ...................................................................................................... 78 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

4

26.7.5 Controlling the Stage .............................................................................................................. 78 
27  TEM scripting in VBScript .................................................................................................................. 79 

27.1  Create an ‘Instrument’ and get the secondary microscope object that you need....................... 79 
27.2  Manipulate and read microscope parameters, invoke microscope actions ................................ 79 
27.3  Use the collections ..................................................................................................................... 80 
27.4  Receive events from the user buttons ........................................................................................ 80 
27.5  Errors and error handling ........................................................................................................... 81 

28  TEM scripting in Visual Basic ............................................................................................................ 83 
28.1  Import the dynamic link library.................................................................................................... 83 
28.2  Create an ‘Instrument’ and get the secondary microscope object that you need....................... 84 
28.3  Manipulate and read microscope parameters, invoke microscope actions ................................ 84 
28.4  Use the collections ..................................................................................................................... 85 
28.5  Receive events from the user buttons ........................................................................................ 86 
28.6  Receive events from a remote microscope server ..................................................................... 86 
28.7  Errors and error handling ........................................................................................................... 87 
28.8  Visual Basic-specific Errors ........................................................................................................ 88 

29  Revision History ................................................................................................................................ 90 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

5

1 TEM Scripting Software License Agreement 
 
TEMScripting Software License         Revised October 2012 
 
“Software” means the TEMScripting software program, including any updates and parts thereof, whether expressed 
in object code, source code or otherwise. Software is copyrighted, and FEI retains exclusive right, title and interest 
in and to the Software and all copies or portions thereof, including all intellectual property rights. Subject to the 
payment of all fees due hereunder, FEI hereby grants Buyer a nonexclusive, nontransferable license in perpetuity 
to use the Software on the system on which it is originally installed and generate or develop scripts or programs for 
internal purposes only (and not for distribution or resell, in either case on a commercial or non-commercial basis), 
subject to the provisions of this license.   As a condition to the license of the Software, Buyer hereby grants to FEI a 
royalty-free, transferable, perpetual license to such scripts or programs.  Buyer understands that certain  scripts or 
programs may adversely impact instrument performance and Buyer takes full responsibility for any script or 
program it creates using the Software.  Seller does not warrant that (i) the Software will meet Buyer’s requirements, 
(ii) the Software will operate in combination with other hardware, software, systems or data not provided by Seller 
(except as expressly specified in the documentation provided with the Product), (iii) the operation of the Software, 
scripts, or programs will be uninterrupted or error-free, or (iv) all Software errors will be corrected.  THE 
WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED OR 
STATUTORY, WITH RESPECT TO THE PRODUCT. NO WARRANTIES SHALL ARISE UNDER THIS 
AGREEMENT FROM COURSE OF DEALING, COURSE OF PERFORMANCE OR USAGE OF TRADE. SELLER 
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND 
FITNESS FOR ANY PARTICULAR PURPOSE. 
 
The Software and documentation and any copies, translations, compilations, partial copies, modifications, 
improvements, enhancements and updates are proprietary to FEI or its licensors, and contain copyrighted material, 
trade secrets and other proprietary material. In order to protect such intellectual property rights and preserve the 
confidentiality of the Software, Buyer may not decompile, reverse engineer, disassemble or otherwise reduce the 
Software to a human-perceivable form, except to the extent expressly permitted by mandatory provisions of 
applicable law (including national laws implementing Directive 91/250/EEC on the legal protection of computer 
programs) in order to gain certain information specified therein, provided that Buyer shall not exercise its rights 
under such laws, unless and until Buyer has first requested the required information from FEI in writing, and FEI, at 
its sole discretion, has not complied with Buyer’s request within a commercially reasonable period of time. Buyer 
may not modify, network, rent, lease, loan, distribute or create derivative works (other than the scripts or programs) 
based upon the Software, in whole or in part. Buyer shall not remove any proprietary notices from any part of the 
Software or documentation. Licensors of third party software that may be included in the Software have all the 
rights and benefits of FEI under this license, and, to the extent permitted by applicable law, shall have no liability for 
any damages, whether direct, indirect, incidental or consequential, arising from the use of such third party software. 
Except as explicitly set forth in the FEI quotation relating to this Software, Buyer shall not make Software or any 
script or programs available in any form to any third party without the prior written consent of FEI, which consent 
may be contingent upon the payment of a transfer fee for the Software.   
 
IN NO EVENT SHALL FEI OR ITS SUPPLIERS BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL OR 
CONSEQUENTIAL DAMAGES OR LOSSES ALTHOUGH FEI MAY BE INFORMED OF THE POSSIBILITY OF 
SUCH DAMAGES IN ADVANCE. EXCEPT AS EXPRESSLY PROVIDED HEREIN, FEI DISCLAIMS ALL OTHER 
LIABILITY TO BUYER OR ANY OTHER PERSON IN CONNECTION WITH THIS LICENSE OR THE DELIVERY 
OR NON-DELIVERY, SALE, MAINTENANCE, USE OR PERFORMANCE OF PRODUCT, INCLUDING 
SPECIFICALLY, BUT WITHOUT LIMITATION, LIABILITY FOR NEGLIGENCE OR STRICT LIABILITY IN TORT. 
NOTWITHSTANDING ANY OTHER PROVISION OF THIS AGREEMENT, IN NO EVENT SHALL FEI’S OR FEI’S 
SUPPLIERS’ LIABILITY UNDER THIS AGREEMENT EXCEED THE PURCHASE PRICE PAID FOR THE 
PRODUCT BY BUYER. BUYER ACKNOWLEDGES THAT THE PRICING OF THE PRODUCT AND THE OTHER 
TERMS AND CONDITIONS OF THIS AGREEMENT REFLECT THE ALLOCATION OF RISK SET FORTH IN 
THIS AGREEMENT AND THAT FEI WOULD NOT ENTER INTO THIS AGREEMENT WITHOUT THESE 
LIMITATIONS OF ITS LIABILITY. 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

6

The Software and documentation are provided with Restricted Rights. Use, duplication, or disclosure by the 
Government is subject to restrictions as set forth in this License and in DFARS 227.7202-3 or FAR 52.227-19, as 
applicable. Manufacturer is FEI Company, 5350 NE Dawson Creek Drive, Hillsboro OR 97124.  
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

7

2 TEM Scripting 
 
 
IMPORTANT NOTE: 64-bit scripting is not supported, all scripting is 32-bit. 
This implies that you have to modify your scripts/programs so they work in 32-bit when connecting to 
scripting. For VB, run under the 32-bits interpreter. 
Note: If you receive back from the scripting adapter that “… the dark field element was not found”, you 
are trying to run as 64-bits. 
 
The TEM scripting adapter enables communication between a script and the TEM microscope (Tecnai or 
Titan). 
To make use of TEM scripting, it is not necessary to have a deeper understanding of the internal 
structure of the TEM software. The adapter's functionality should be understandable to somebody who is 
able to use a TEM microscope. 
Most scripting or programming languages (e.g. VBScript, JScript, Visual Basic, C++, Delphi, Python, C#) 
are supported. The examples you find in the various chapters of this help file use JScript syntax, but the 
help also includes chapters that address the peculiarities of other languages. You can also inspect the 
example programs that are delivered with TEM scripting (the default installation directory is 
tecnai\scripting or titan\scripting). 

2.1 Introduction 
The TEM Scripting adapter supports its clients (in other words: your scripts) with a number of software 
objects that correspond to the various parts of the microscope. These objects are the main components 
of the adapter. The adapter further provides some other features such as User Button events and TEM 
constants for convenience.  

2.1.1 Tem objects 

2.1.1.1 The ‘Instrument’ object 
This is the main object. It manages access to all parts of the microscope, for example the gun, the 
camera and so forth, that are modelled as ‘secondary microscope objects’. 
 
Please note: Because of the introduction of the Titan Microscope, the TEM scripting object (previously 
called "Tecnai") has become more generic: it is now called TEMScripting. Because of this change you 
may have to recompile any existing code. Additionally, ‘virtual/pseudo names’ for some vacuum gauges 
on Tecnai are no longer supported; see section The Gauge (utility object) for more information. 
 
But in the main, all functions previously present have not changed. 

2.1.1.2 The secondary microscope objects 
These objects represent the parts of the microscope. They have properties and methods as is common 
for objects in most scripting languages. The properties directly correspond to microscope parameters 
(such as magnification, beam shift etc.). Together they define the state of the microscope that can be 
controlled through scripting. The methods generally invoke some actions (taking an exposure, 
normalizing the lenses etc). 

2.1.1.3 The utility objects 
There are some TEM specific utility objects that are used to handle multidimensional properties (such as 
the stage position, which consists of 5 coordinates). 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

8

2.1.2 TEM Scripting Features:  

2.1.2.1 Synchronous functions 
In order to support a simple, sequential way of scripting, all the adapters functions work synchronous, i.e. 
they will only return after they have finished executing. (The setting of properties is equivalent to a 
function call.) 
 

2.1.2.2 Events 
The adapter supports the usage of the six User Buttons L1..L3, R1..R3 (on the TEM control pads) and 
can, if desired, generate events when they are pressed. These events can be handled by the script. 
Thus a user can interact with the script via the control pads of the microscope.  

2.1.2.3 TEM constants 
For ease of programming, a number of TEM-specific constants have been defined. These constants are 
accessed as elements of enumerations. For example, there exists an enumeration named 
ScreenPosition that enumerates the possible positions of the fluorescent screen. Using the values spUP, 
spDown, and spUnknown, that are elements of this enumeration, instead of direct values like 1 ,2 , or 3 
makes programming easier and reduces the chance of programming errors. Some programming 
environments (such as the one for VB, for example) possess an IntelliSense mechanism that supports 
the use of enumerated constants via dropdown menus.  

2.1.2.4 TEM error codes 
For the same reason the adapter includes some TEM-specific error codes, that represent physical error 
conditions. 
 

2.2 Testing your Scripting Programs 
Testing your TEM Scripting programs can obviously be done on the Microscope itself. However it is wise 
to do a reasonable amount of testing on a test PC running Tecnai/Titan in simulation mode before 
experimenting on the hardware. 
 
Where possible make sure that the simulation software is being installed on a system with ‘no other 
software’. FEI recommends not installing the simulation software on a PC that is heavily used for other 
purposes. At the very least make sure that a full backup image is taken of the PC beforehand in case of 
problems. Explanation - the simulation software is a subset of what is actually installed on the 
Microscope PC which is a ‘relatively controlled environment’. In other words, it is not practical to test that 
the simulation software runs in combination with all other software packages that might be running on 
the test PC. 
 
Installing the TEM Scripting Adapter currently means that the regular TEM software is also installed 
(many of the regular software files are used during the registration of the scripting adapter and without 
proper registration the software will not run). It can be installed in two ways: 

 
1. Use the TEM software DVD to install the software. In this case the software itself is not switched to 

simulation and cannot be run (it expects the hardware to be present). So it will not be able to do any 
testing on the test PC with this setup. 

 
2. Request a Simulation DVD from FEI. 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

9

2.3 A first example 
It is easy to start with TEM scripting. Suppose you want to know the actual magnification. You need to do 
three things: 
1. create an ‘Instrument’ object 
2. get access to the projection system 
3. check the property ‘Magnification’ 
 
The following code does this (in JScript syntax): 
 
var MyTem    = new ActiveXObject("TEMScripting.Instrument") 
var Proj     = MyTem.Projection 
var m        = Proj.Magnification 
 
Please note: Because of the introduction of the Titan microscope, the TEM scripting object (previously 
called "Tecnai") has become more generic : it is now called TEMScripting. 
 
The variable m now contains the magnification. That's it! 
In the same way you can set properties to new values. For example 
 
Proj.MagnificationIndex = Proj.MagnificationIndex + 1 
 
is essentially the same as increasing the magnification by turning the button on the TEM control pad by 
one click clockwise. 
 

2.4 A second example (using utility objects) 
Some properties do not consist of a ‘simple type’. For example, the image shift is a two-dimensional 
property, having an x- and an y-component. The ‘utility’ objects are used to handle these, because 
generally you would like to set and read all components of those properties simultaneously.  
 
The following example shows how to use them (JScript syntax): 
Start again by creating access to the projection system 
 
var MyTem  = new ActiveXObject("TEMScripting.Instrument") 
var Proj   = MyTem.Projection 
 
Suppose we want to shift the image in x-direction to +500nm, leaving the y-position at 0: 
 
var MyImageShift = new MyTem.Vector(0.5E-6,0) 
Proj.ImageShift  = MyImageShift 
 
The first statement creates a ‘Vector’ object that is already initialized with the desired the image shift. 
(Since the ‘Vector’ object is TEM-specific, its creation is also handled by the main ‘Instrument’ object.)  
The second line uses the ‘Vector’ to set the image shift. The described way of creating a utility object 
currently only seems to work in JScript. 
Alternatively, if you read the image shift you will of course also get a ‘Vector’ returned: 
 
var MyImageShift = Proj.ImageShift 
MyImageShift.X   = MyImageShift.X + 0.5E-6.0 
Proj.ImageShift  = MyImageShift 
 
This will result in a relative image shift in x-direction of 500nm. 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

10

Note that setting the image shift x (changing the value of MyImageShift.X alone) to a different value does 
not do anything on the microscope itself. You have to set the modified vector as a whole back (in other 
words, in the previous example it is the third line of code that does it). 
 

2.5 TEM modes 
There is one important feature of the TEM microscopes inner working that needs to be explained before 
the TEM objects and properties are described in detail. 
 
Certain microscope parameters such as the intensity setting, the focus value, the spotsize, etc., are 
dependent on the optical "mode" of the microscope. A "mode" is characterized by a specific setting of 
the lenses that interact to form the image and the beam. As such, the optical mode is determined by the 
following parameters that you probably know from working with the microscope: 
• the probe setting (microprobe/nanoprobe) 
• the projector mode (diffraction/imaging) 
• the range of magnification or diffraction (LM, Mi, SA, Mh, LAD, D) 
• the lens program (Regular or EFTEM) 
• the high tension range (there are three ranges named high, medium and low for microscopes with 

maximum high tension greater or equal than 200kV) 
 
Some parameters of the optical system change on a transition between modes (i.e., internally, they exist 
‘per mode’). For example, when you switch from low LM to Mi magnification, the focus setting will 
change. It will return to its old ‘LM-value’, if you lower the magnification again. Such parameters are 
called ‘mode dependent’. 
 
The same will happen with the corresponding properties of the TEM scripting adapter's microscope 
objects. If you change a mode dependent property, this will only affect the current mode and thus will not 
affect its values in the other modes. Only the values of the active mode can be accessed and, 
consequently, switching between modes changes the exposed values of properties. 
The adapter objects that possess such mode dependent properties are of course the ones that have 
something to do with lens settings, i.e. the ‘Illumination’ and the ‘Projection’ objects.    
 

2.6 Remote Scripting 
Using TEM Scripting, it is possible to write applications that communicate with a microscope server that 
runs on another computer. Thus it is possible to control the microscope remotely. For this purpose, you 
have to have a version of TEM Scripting installed locally. This means that the files stdscript.dll (and for 
VBScript users also scriptevents.dll) plus all other TEM software files that these files depend on have to 
be installed on your local machine and registered. 
 
Important note: The acquisiton does not work with remote scripting (the images are memory mapped 
and that cannot be accessed by the remote PC). 
 
In order to be able to install the TEM Scripting adapter you have to install the regular TEM software on 
the same PC (many of the regular software files are used during the registration of the scripting adapter 
and without proper registration the software will not run). Section Testing your Scripting Programs above 
outlines the options for doing this. 

2.6.1 Specifying the microscope server 
To access the remote microscope computer, its name has to be known to TEM Scripting (and also 
possibly to other remote TEM tools that are available at the time of publishing). The name of the remote 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

11

server is stored in the system's database, the so-called registry. You can do it yourself, by editing the 
system registry. (Be careful not to delete or change any other registry entries by accident!): 
1. Login as administrator. 
2. Open a registry editor: Click the Windows 'Start' button, choose 'run' and type 'regedit' or 'regedt32', 

click 'ok'. 
3. A registry editor should open. Under the key HKEY_LOCAL_MACHINE\SOFTWARE\FEI, add a new 

sub-key named 'Scripting'. 
4. Add a new string value named "RemoteHost" to this key and assign the name of the server to this 

value (for example "\\ACHT405"). 
5. Close the registry editor. 
6. Logoff and login under your own user account.  
 
From now on, every application that uses TEM Scripting will connect to the remote microscope server. If 
you have a microscope server installed on your local machine as well, and you want to make contact to 
the latter again, then you have to set the name of the server in the registry value "RemoteHost" in the 
registry key HKEY_LOCAL_MACHINE\SOFTWARE\FEI\Scripting to an empty string or delete the whole 
key again. 

2.6.2 Receiving events from a remote microscope server 
The only events that your application can receive from the microscope server are the events that are 
fired when the user buttons on the TEM hand panels are used. If you want to receive those events also 
from a remote microscope, then you may have to add some additional code to your application. The 
reason for this is security. The communication between application and microscope server uses COM 
(the Microsoft common object model). COM does a lot of things underwater for you, including initializing 
security. Now we have the situation that a system service (the microscope server probably runs as such) 
on a remote computer wants to call a function in your application. COM does not allow that by default. To 
allow it, you have to call a function named 'CoInitializeSecurity'. This function call has to be made, before 
COM does this itself underwater, because this function can only be called once per application. Since 
the details of how and when to call 'CoInitializeSecurity' has to be called are language dependent, we 
refer here to the chapter 'Scripting in various languages'. 
 
Applications that rely on a browser to run (for example scripts written in JScript or VBScript, or ActiveX 
components written in any language), cannot do that. They will probably work anyway (because we are 
able to handle security issues from the microscope server side in this case). Workaround: if 'temserver' 
service and remote application run under the same user account, then there is no problem. You would 
have to create a special account for remoting. 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

12

3 The TEM Object Model 
  

3.1 The microscope objects 
The following tree shows the main adapter object (‘Instrument’, the only microscope object to be created 
by your script) and all secondary objects that can be accessed through it. These secondary objects are 
modelled as read-only properties of the ‘Instrument’ object. They all relate to a specific part of the 
microscope and are directly connected to the running microscope. Thus, changes in microscope 
parameters (for example via the TEM user interface) will affect their properties and vice versa. One of 
the microscope objects (the ‘UserButtons’) in the object-tree appears in the plural form in the object-tree. 
In this case the returned object is a collection of 6 ‘UserButton’objects. 

 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

13

3.2 Utility objects 
Besides the objects listed above, there are some utility objects that can contain more complex data, for 
example the stage position, the image shift etc. They are used to handle ‘compound’ or multi-
dimensional properties. The utility objects ensure that pieces of information that belong together are read 
and set simultaneously. These objects are therefore local copies (they exist in your script only). In 
contrast to the microscope objects they have no connection to the TEM server. 
 

  
 
 

Vector

SizeLong

StagePosition

SizeDouble

Gauge



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

14

4 The Instrument object 
This is the main object of the scripting adapter. It is the only object that can be created directly by your 
script. Every other microscope object must be assessed as a property of the ‘Instrument’ object: 
 
var MyTem = new ActiveXObject("TEMScripting.Instrument") 
 
creates an instance of this object (in JScript syntax). 
  
Property Description 
Acquisition [Object] 

Interface to the acquisition of CCD and STEM images. 
AutoLoader [Object] 

Interface to the Autoloader. 
AutoNormalizeEnabled [Boolean], read/write 

Enables/disables the automatic normalization procedures performed by 
the TEM microscope. Normally they are active, but for scripting it can be 
convenient to disable them temporarily. 

BlankerShutter [Object] 
Interface to the BlankerShutter ShutterOverrideOn property. 

Camera [Object] 
Interface to the camera module. Also gives access to control of the 
fluorescent screens. 

Configuration [Object] 
Interface to the configuration object that allows querying whether the 
microscope is a Tecnai or Titan. 

Gun [Object] 
Interface to the gun deflection and high tension functionality. 

Illumination [Object] 
Interface to the ‘Illumination’ system that comprises the condenser 
lenses, the mini condenser lens, the beam deflection coils and the 
condenser stigmator. Responsible for beam (or ‘probe’) properties. 

InstrumentModeControl [Object] 
Interface to the instrument control functions that allow checking whether 
the microscope has STEM and, if so, switch between TEM and STEM 
modes. 

Projection [Object] 
Interface to the part of the instrument that forms the image, comprising 
the objective, diffraction and projection lenses, the corresponding 
stigmators and the image deflectors. 

Stage [Object] 
Interface to the stage / goniometer functions. 

TemperatureControl [Object] 
Interface to the temperature controlller. 

UserButtons [Collection of  UserButton objects] 
UserButtons interface to the user buttons L1..L3, R1..R3 of the TEM 
hand panels. 

Vacuum [Object]  
Interface to the vacuum system. 

 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

15

 
Methods Description 
NormalizeAll() [Void] 

Normalizes all lenses. To normalize portions of the microscope, refer to 
the subsystems. 

 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

16

5 The microscope objects 
These secondary microscope objects relate to specific parts of the microscope. Through these objects, 
most of the functionality of the microscope is accessible. They can (and have to) be retrieved as 
properties of the main ‘instrument’ object. For example 
 
var Proj = MyTem.Projection 
 
gives you an instance of the ‘Projection’ object (supposing your ‘Instrument’ is named ‘MyTem’). 
 
Object Description 
Acquisition Interfaces to the CCD and STEM acquisition 
AutoLoader Interfaces to the Autoloader 
BlankerShutter Interface for the shutter override function 
Camera Interfaces to the camera and the fluorescent screens 
  
Configuration Interface to the configuration object that allows querying whether the 

microscope is a Tecnai or Titan. 
Gun Interfaces to the functionality of the gun and the high tension. 
Illumination Interfaces to the illumination system that forms and manipulates the 

beam 
InstrumentControlMode Interfaces to the TEM/STEM switch 
Projection Interfaces to the imaging system 
Stage Interfaces to stage and specimen holder 
TemperatureControl Interfaces to the temperature controller 
UserButton(s) Interface(s) to the user button(s), can receive events 
Vacuum Interfaces to the vacuum system 
 
   



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

17

6 The Acquisition object 
The Acquisition object gives access to CCD and STEM image acquisition. 
 
Notes: 
• In order for acquisition to be available TIA (TEM Imaging and Acquisition) must be running 

(even if you are using DigitalMicrograph as the CCD server). 
• If it is necessary to update the acquisition object (e.g. when the STEM detector selection on 

the TEM UI has been changed), you have to release and recreate the main microscope object. 
If you do not do so, you keep accessing the same acquisition object which will not work 
properly anymore. 

 

 
 
 
 The Acquisition object exposes the CCDCameras and STEMDetectors together with a number of 
general methods. 
 
The main entry point to the acquisition functionality is the Acquisition interface. From this interface, it is 
possible to query all available (i.e. installed on the system) acquisition devices: CCD cameras and STEM 
detectors. For each of these devices it is possible to retrieve an information object, which tells something 
about (hardware) parameters of the device, for instance, the dimensions of the CCD chip (in pixels). 
For each of the CCD cameras, an acquisition parameters object can be retrieved to change the default 
acquisition settings (i.e. exposure time). In contrast, the STEM acquisition parameters are not device-
specific but instead apply to all detectors. 
 

Acquisition

Cameras

Detectors Info

AcqParams

Camera ...

Camera 1

Detector ...

Detector 1

Info

AcqParams



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

18

In order to acquire an image from an acquisition device (CCD or STEM detector), the following steps 
need to be taken: 
• TIA (TEM Imaging and Acquisition) application must be running. 
• Get the Acquisition object from the main instrument interface of the Standard Scripting component. 
• Query available CCD cameras and STEM detectors, looking for the device from which you would like 

to acquire an image. Note: in the current version of Standard Scripting only devices which are 
selected in the Microscope User Interface will be available in the query. In future versions of the 
Standard Scripting we envision the possibility to query and select any acquisition device available in 
the system, without the need for human interaction with the Microscope User Interface. The software 
interfaces of the Acquisition objects are already prepared for such extensions. 

• Add the queried acquisition device to the list of devices in the Acquisition object. Internally, the 
Acquisition object maintains a list of acquisition devices on which is has to perform image acquisition 
when AcquireImages() method is called. You can manipulate this list of devices through Acquisition 
object interface. 

• Acquire images by calling AcquireImages() method on the Acquisition object. The method will 
acquire the images from all the devices currently found in its internal list of acquisition devices 
(acquisition is performed sequentially). When acquisition is finished, the method returns an array of 
acquired images. 

• Each of the acquired images has a name property which returns the device name the image was 
acquired from. The actual image data can be retrieved as a safe-array from the Image object. 

 

6.1 Usage example in a pseudo-programming language 
// get Acquisition object 
  Instrument instrObj = new TEMScripting.Instrument; 
  Acquisition acqObj = instrObj.Acqusition(); 
 
// Query available acquisition devices 
  CCDCameras ccdCollection = acqObj.CCDCameras; 
  For (index = 0; index < ccdCollection.Count(); index++) 
  { 
  CCDCamera ccd = ccdCollection.At(index); 
  Print (“found CCD camera: %s“, ccd.Name()); 
  } 
 
  STEMDetectors stemCollection = acqObj.STEMDetectors; 
  For (index = 0; index < stemCollection.Count(); index++) 
  { 
  STEMDetector stem = stemCollection.At(index); 
  Print (“found STEM Detector: %s”, stem.Name()); 
  } 
 
// Acquire an image from “WAC CCD” camera 
  acqObj.AddAcqDeviceByName(“WAC CCD”); 
  AcqImages imageCollection = acqObj.AcquireImages(); 
 
// since we added only one acquisition device, there will be only 
// one image in the image collection 
  AcqImage img = imageCollection.At(0); 
 
// get access to pixels 
  Array imgData = img.AsSafeArray(); 
 
// do something with image data&ldots; 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

19

Property Description 
Cameras [Object] 

Interface to the CCD cameras. 
Detectors [Object] 

Interface to the STEM detectors. 
 
 
Method Description 
AddAcqDevice 
([in] pDevice ) 

[Void] 
Adds an acquisition device to the list of active acquisition devices. 

AddAcqDeviceByname 
([in] deviceName String) 

[Void] 
Adds the acquisition device with the name specified to the list of active 
acquisition devices. 

RemoveAcqDevice([in] 
pDevice) 

[Void] 
Removes the acquisition device from the list of active acquisition devices. 

RemoveAcqDeviceByName
([in] deviceName String) 

[Void] 
Removes the acquisition device with the name specified from the list of 
active acquisition devices. 

RemoveAllAcqDevices [Void] 
Clears the list of active acquisition devices. 

AcquireImages [AcqImages] 
Acquires the image or images using the currently set list of acquisition 
devices and returns an interface to the image collection. 

 

6.2 CCDCameras 
CCDCameras contains all available CCD cameras on the microscope. 
 
Note: In order for a camera to be "available" it must be selected in the microscope user interface. 
Currently it is not possible to do this selection through scripting. 
 

6.2.1 CCDCamera 
 
Property Description 
Info [Object] 

Interface to the information on the CCD camera. 
AcqParams [Object] 

Interface to the acquisition parameters of the CCD camera. 
 
  



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

20

6.2.1.1 CCDCameraInfo 
 
Property Description 
Name [String], read only 

A string with the name of the CCD as it appears in the 
microscope's user interface. 

Height [Long], read only 
The height of the CCD camera in pixels. 
 

Width [Long], read only 
The width of the CCD camera in pixels. 

PixelSize [Vector], read only 
The physical size in X and Y direction of the CCD pixels (that is, 
the size as they are on the CCD chip, typically a value in the 
range 15 to 30 micrometers). 

Binnings [SafeArray], read only 
An array with the binning values supported by the CCD. 

ShutterModes [SafeArray], read only 
An array with the shutter modes supported by the CCD. 

ShutterMode [AcqShutterMode], read/write 
The currently selected shutter mode of the CCD. 

BinningsAsVariant [VARIANT], read only 
An array with binning values supported by the CCD, should be 
used by JScript and VBScript clients instead of the Binnings 
property. 

ShutterModesAsVariant [VARIANT], read only 
An array with the shutter modes supported by the CCD, should be 
used by JScript and VBScript clients instead of the Binnings 
property. 

 
Notes:  
• Generally the binning values and exposure time are related (quadratically). If you increase the 

binning from 1 to 4, you normally have to decrease the exposure time by 4² in order to prevent CCD 
saturation. This relation does not exist for the Eagle CCD camera, which uses an optimised scheme 
where the ratios are as given in the table below. 

• The ShutterMode of the CCD camera refers to the shutter(s) being used. The availability of different 
shutters is dependent on the type of CCD camera (e.g. SIS cameras have none, Gatan cameras 
typically have pre- and post-specimen, the Eagle has pre- and post-specimen and can also use both 
shutters simultaneously). The shutter mode is a global microscope setting, so if this is changed in 
a script, you will see the change back in the TEM User Interface (CCD/TV General flap-out). Make 
sure to retrieve the setting befor running a script and setting it back when closing down, so the user 
is not confronted with unintended changes to the microscope settings. 

 
Eagle CCD type Binning values Exposure time 
2k 1 : 2 : 4 1 : 0.5 : 0.125 
4k 1 : 2 : 4 : 8 1 : 1 : 0.5 : 0.125 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

21

6.2.1.2 CCDAcqParams 
 
Property Description 
ImageSize [AcqImageSize], read/write 

The size of the image to be collected. 
ExposureTime [Double], read/write 

The exposure time in seconds. 
Binning [Long], read/write 

The binning value to be used for the image acquisition. Make sure 
the value is one of the supported binning values. 

ImageCorrection [AcqImageCorrection], read/write 
The type of correction to be applied. Bias/gain correction can only 
be applied if this has been done in the CCD server prior to 
scripting. 

ExposureMode [AcqExposureMode], read/write 
The currently selected exposure mode of the CCD. 

MinPreExposureTime [Double], read only 
The minimum available pre-exposure time in seconds. 

MaxPreExposureTime [Double], read only 
The maximum available pre-exposure time in seconds. 

MinPreExposurePauseTime [Double], read only 
The minimum available pre-exposure pause time in seconds. 

MaxPreExposurePauseTime [Double], read only 
The maximum available pre-exposure time in seconds. 

PreExposureTime [Double], read/write 
The pre-exposure time in seconds. 

PreExposurePauseTime [Double], read/write 
The pre-exposure pause time in seconds. 

 
Note: Pre-exposures can only be be done when the shutter mode is set to "Both". This is only available 
for Eagle CCD cameras. When pre-exposure is used, the specimen is illuminated for the pre-exposure 
time defined. The pre-exposure is done by opening the pre-specimen shutter while the post-specimen 
shutter remains closed to prevent electrons from falling on the CCD. A pre-exposure may help to 
stabilize specimens (e.g. when charging). When a pre-exposure pause is used, there is a delay (of the 
defined pause time) inserted between the pre-exposure and the actual CCD exposure. During this delay 
both shutters are closed. 
The exposure mode is NOT a global microscope setting, so if this is changed in a script, you will NOT 
see the change back in the TEM User Interface (CCD/TV General flap-out). 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

22

6.3 STEMDetectors 
STEMDetectors contains all available STEM detectors on the microscope. 
 

6.3.1 STEMDetectors 
 
Property Description 
AcqParams [Object] 

Interface to the acquisition parameters of the STEM detectors. 
Acquisition parameters for STEM are generic and not bound to a 
particular detector. 

 
Note: In order for a detector to be "available" it must be selected in the microscope user 
interface. Currently it is not possible to do this selection through scripting. 
 

6.3.2 STEMDetector 
 
Property Description 
Info [Object] 

Interface to the information on the STEM detector. 
  

6.3.2.1 STEMDetectorInfo 
 
Note: The maximum size of the unbinned STEM image is 4096² pixels (only if the 4K STEM option has 
been purchased, if not then the maximum is 2K²). 
 
Property Description 
Name [String], read only 

A string with the name of the STEM detector as it appears in the 
microscope's user interface. 

Brightness [Double], read/write 
The brightness setting of the STEM detector. 

Contrast [Double], read/write 
The contrast setting of the STEM detector. 

Binnings [SafeArray], read only 
An array with the binning values supported by the STEM detector. 
Technically speaking these are "pixel skipping" values, since in 
STEM we do not combine pixels as a CCD does, but other than 
that these values work the same way as in CCD acquisition (e.g. 
half frame with binning 4 gives a 256² image on a 2k CCD as well 
as on the STEM). 

BinningsAsVariant [VARIANT], read only 
An array with binning values supported by the STEM detector, 
should be used by JScript and VBScript clients instead of the 
Binnings property. 

 
    
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

23

6.3.2.2 STEMAcqParams 
 
Property Description 
ImageSize [AcqImageSize] 

The size of the image to be collected. 
DwellTime [Double] 

The pixel dwell time in seconds. The frame time equals the dwell 
time times the number of pixels plus some overhead (typically 
20%, used for the line flyback). 

Binning [Long] 
The binning value to be used for the image acquisition. Make sure 
the value is one of the supported binning values. 

 

6.4 AcqImages 
The AcqImages contains all images acquired (through the AcquireImages; it does not contain a backlist 
of all previous recordings). 

6.4.1 AcqImage 
 
Property Description 
Name [String], read only 

The name of the detector (CCD camera or STEM detector) used 
to acquire the image. 

Width [Long], read only 
The width (in pixels) of the image. 

Height [Long], read only 
The height (in pixels) of the image. 

Depth [Long], read only 
The maximum number of bits in the image. The image as 
retrieved always has 16 bits, but the original - CCD - image may 
have had less depth, dependent on the CCD camera used. 

AsSafeArray [SafeArray] read only 
A SafeArray with the pixel values (32-bit signed integer) of the 
image. 

AsVariant [VARIANT], read only 
An array with pixel values (32-bit signed integer) of the image, 
should be used by JScript and VBScript clients instead of the 
Binnings property. 

AsFile [String, AcqImageFileFormat, Boolean], read only 
Image is saved to the specified file in the specified format (see 
AcqImageFileFormat type below). Boolean allows the image to be 
normalized, see note below. 

 
AsFile method : The third parameter of the AsFile method is a boolean indicating whether the image 
should be normalized before saving to file. E.g. if the image has min and max pixel values of 213 and 
567 respectively then after normalizing these values are re-scaled to 0 and 65535 when saving to 16-bit 
png format. The primary purpose of this is to allow easy display of the image in client code without any 
manipulation (e.g. useful for JScript clients). The parameter default is false, which is what is needed 
if the client wishes the image as it was originally acquired. 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

24

6.5 Acquisition Constants 

6.5.1 Enum AcqImageSize 
The image sizes supported by the CCD and STEM acquisition are a subset of what is usually available 
on the microscope. They have been chosen so they are supported by all CCD cameras. 
 
Value Description 
AcqImageSize_Full Image size covers the whole CCD or STEM range 
AcqImageSize_Half Image size covers half of the CCD or STEM range, centered 
AcqImageSize_Quarter Image size covers one quarter of the CCD or STEM range, 

centered 
 

6.5.2 Enum AcqImageCorrection 
 
Property Description 
AcqImageCorrection_Unprocessed CCD images are uncorrected 
AcqImageCorrection_Default CCD images are bias- and gain-corrected 
 

6.5.3 Enum AcqShutterMode 
 
Property Description 
AcqShutterMode_PreSpecimen The pre-specimen shutter (blanking before the specimen) is used) 
AcqShutterMode_PostSpecimen The post-specimen shutter (blanking after the specimen) is used 
AcqShutterMode_Both Both pre- and post-specimen shutters are used together 
 

6.5.4  Enum AcqExposureMode 
 
Property Description 
AcqExposureMode_None Default setting 
AcqExposureMode_Simultaneous The pre- and post-specimen shutter are used together 
AcqExposureMode_PreExposure Same as previous but before the actual CCD exposure the 

specimen is illuminated for the duration of the pre-exposure 
time set 

AcqExposureMode_PreExposurePause Same as previous but after the pre-exposure and before the 
actual CCD exposure is a pause fro the duration of the pre-
exposure pause time set. 

 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

25

6.5.5 Enum AcqImageFileFormat 
 
Property Description 
AcqImageFileFormat_TIFF Image is saved in 16-bit TIFF format. 
AcqImageFileFormat_JPG Image is saved in 8-bit JPG format. 
AcqImageFileFormat_PNG Image is saved in 16-bit PNG format. 
AcqImageFileFormat_RAW Image is saved in FEI RAW format. 
AcqImageFileFormat_SER Image is saved in TIA SER format. 
AcqImageFileFormat_MRC Image is saved in MRC format. 
  

6.5.6 AsFile method 
This allows clients to request that an acquired image be saved in a specified format and in a specified 
location. TIFF (16-bit), JPG (8-bit), and PNG (16-bit) are currently supported. Of course this method can 
be used by any type of client, Scripting or otherwise. 
 
The following JavaScript code snippet shows how the property might be used. For illustration it shows 
saving a previously acquired image in the three supported formats.  
  
  // file formats for saving images 
  var AcqImageFileFormat_TIFF = 0; 
  var AcqImageFileFormat_JPG = 1; 
  var AcqImageFileFormat_PNG = 2; 
   
  g_acquiredImage.AsFile("C:\\Temp\\SaveCcdImage.tif", AcqImageFileFormat_TIFF); 
  g_acquiredImage.AsFile("C:\\Temp\\SaveCcdImage.jpg", AcqImageFileFormat_JPG); 
  g_acquiredImage.AsFile("C:\\Temp\\SaveCcdImage.png", AcqImageFileFormat_PNG); 
  
Additionally, the following formats can in principle be used. Subject to proper testing and depending on 
feedback from customers these formats may be ‘officially added’ at a later date. 
 
  // these formats still under discussion/development, magic cookie of 123 needed 
  // to experiment with them 
  g_acquiredImage.AsFile("C:\\Temp\\Scripting\\SaveStemImage.raw", 123); 
  g_acquiredImage.AsFile("C:\\Temp\\Scripting\\SaveStemImage.ser", 123); 
  g_acquiredImage.AsFile("C:\\Temp\\Scripting\\SaveStemImage.mrc", 123);  
 
The raw format is an internal format used by FEI; its most likely use is when trying to diagnose problems 
with images since it allows inspection of the image data ‘exactly’ as it is returned from the server code. 
The ser format is the officially published TIA format. And the mrc format is the format used by several 
microscopy related packages; it does not currently include the FEI extended header since only a single 
image is returned from the scripting component. Any feedback on the merits or otherwise of these 
formats is welcome (please mail to Dave.Karetnyk@fei.com ). 
 

6.6 SafeArray handling 
SafeArrays (or variant arrays) are the standard way of marshaling data arrays through COM. In general 
you should look up the documentation provided with the programming language you are using, but below 
is some additional information. For using SafeArrays int Delphi, see the code of the example program 
provided. 
  
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

26

C++ 
Very important: Make sure the declaration for the image array is _variant_t, otherwise you run the risk 
that C++ clears the data before you can access them. The code snippet below gives an example on how 
you can access the pixels. 
 
if (m_pCamServer) { 
  HRESULT hr = m_pCamServer->AcquireImages(&m_pAcquisition); 
  if (SUCCEEDED(hr)) { 
    int n = m_pAcquisition->Count; 
    if (n == 0) 
      ShowMessage(_T("No images here")); 
    else { 
      m_pAcqImage = m_pAcquisition->Item[0]; 
      if (m_pAcqImage) { 
        int h = m_pAcqImage->get_Height(); 
        int w = m_pAcqImage->get_Width(); 
 
 
        _variant_t img = m_pAcqImage->AsSafeArray(); 
 
        CComSafeArray<short> data; 
        data.Attach(img.Detach().parray); 
        ATL::CWindow pWindow = NULL; 
        pWindow = GetDlgItem(IDC_EDIT1); 
        CString txt,txt2; 
        txt = ""; 
        for (int i = 0; i<25; i++){ 
        short pixel = data[i]; 
        txt2.Format(_T("%s,%i"),txt,pixel); 
        txt = txt2; 
      } 
      pWindow.SetWindowText(txt); 
    } 
 
  } else 
  ShowMessage(_T("Cannot acquire image(s)")); 
} 
  
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

27

7 The AutoLoader object 
The AutoLoader is a system that allows specimen loading/unloading through cartridges from a cassette. 
 
Property Description 
AutoLoaderAvailable [Boolean], read only 

Returns whether the AutoLoader is available on the microscope. 
Numb erOfCassetteSlots [Long], read only 

The number of cassette slots in a cartridge. 
SlotStatus 
([in] slot Long) 

[CassetteSlotStatus], read only 
The status of the slot specified. 

  
 
Method Description 
LoadCartridge 
([in] fromSlot Long) 

Loads the cartride in the given slot into the microscope. 

UnloadCartridge() [Void] 
Unloads the cartridge currently in the microscope and puts it back into its 
slot in the cassette. 

PerformCassetteInventory() [Void] 
Performs an inventory of the cassette (determines which slots are empty 
or occupied). 

    

7.1 Cassette slot status constants 

7.1.1 Enum CassetteSlotStatus 
 
Value Description 
CassetteSlotStatus_Unknown Cassette slot status has not been determined 
CassetteSlotStatus_Occupied Cassette slot contains a cartridge 
CassetteSlotStatus_Empty Cassette slot is empty 
CassetteSlotStatus_Error Cassette slot generated an error 
  
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

28

8 The BlankerShutter object 
The BlankerShutter object has only one property, ShutterOverrideOn. This property can be used in cryo-
electron microscopy to burn ice off the specimen while blocking the beam from hitting the CCD camera. 
When the shutter override is true, the CCD camera no longer has control over the microscope shutters. 
The shutter below the specimen is closed. Whether the beam is on the specimen is determined by the 
BeamBlanked property of the Illumination object. 
 
Property Description 
ShutterOverrideOn [Boolean], read/write 

Determines the state of the shutter override function. 
 
WARNING: Do not leave the Shutter override on when stopping the script. The microscope 
operator will be unable to have a beam come down and has no separate way of seeing that it is 
blocked by the closed microscope shutter. 
 
Suggested procedure: 
1. Blank the beam using the BeamBlanked property of the Illumination object. 
2. Switch the shutter override on. 
3. If necessary, wait for a short delay (one second) to allow the system to execute the shuttering. 
4. Unblank the beam (the CCD no longer has control). 
5. Wait for the time necessary to burn off the ice (sleep, Windows timer, ...) 
6. Blank the beam. 
7. Switch the shutter override off. 
8. If necessary, wait for a short delay (one second) to allow the system to switch the shuttering back to 

normal. 
9. Unblank the beam (the CCD now has control again). 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

29

9 The Camera object 
 
Note: The plate camera has become obsolete with Win7 so most of the existing functions are no 
longer supported. 
  
Property Description 
MainScreen [ScreenPosition], read/write 

The position of the main screen. Setting the main screen to the 
upward position also moves the small screen up (out). 

IsSmallScreenDown   [Boolean], read only 
The Position of the small screen. It cannot be moved down (in) by 
a software command. It moves up (out) with the main screen. 

ScreenCurrent [Double], read only 
The current measured on the fluorescent screen (units: Amperes). 

  

9.1 Camera object constants 

9.1.1 Enum ScreenPosition 
 
Value Description 
spUnknown Position of main screen is not known, for example during 

movement 
spUp Main screen is up (in which case the small screen will also be up) 
spDown Main screen is down 
 
 
  
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

30

10 The Configuration object 
The Configuration object allows you to query whether the microscope is a Tecnai, Titan or a Talos. 
 
Property Description 
ProductFamily [ProductFamily], read only 

The type of microscope. 
CondenserLensSystem [CondenserLensSystem], read only 

For Titan: The type of condenser lens system (two or three condenser 
lenses). 

  
  

10.1 Configuration object constants 

10.1.1 Enum ProductFamily 
 
Value Description 
ProductFamily_Tecnai The microscope is a Tecnai 
ProductFamily_Titan The microscope is a Titan 
ProductFamily_Talos The microscope is a Talos 
  

10.1.2 Enum CondenserLensSystem 
 
Value Description 
CondenserLensSystem_TwoCondenserLenses The microscope is a Titan but has only two 

condenser lenses. This makes the illumination 
system similar to that the Tecnai and should be used 
that way (e.g. the Titan-specific functions like 
CondenserMode or IlluminatedArea do not work). 

CondenserLensSystem_ThreeCondenserLenses The microscope is a regular Titan 
  
  
  
 
 

 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

31

11 The Gun object 
 
Property Description 
Tilt [Vector], read/write 

The gun tilt alignment values. Range from -1.0   to +1.0 in x and y 
directions (logical units). The beamblanker changes the gun tilt. Therefore 
changing the gun tilt alignment is blocked as long as the beamblanker is 
active. 

Shift [Vector], read/write 
The gunshift alignment values. Range from -1.0   to +1.0 in x and y 
directions (logical units). 

HTState [HTState], read/write 
The state of the high tension. (The high tension can be on, off or 
disabled). Disabling/enabling can only be done via the button on the 
system on/off-panel, not via script. When switching on the high tension, 
this function cannot check if and when the set high tension value is 
actually reached. 

HTValue [Double], read/write 
The value of the HT setting as displayed in the TEM user interface. Units: 
Volts. 

HTMaxValue [Double], read only 
The maximum possible value of the HT on this microscope. Units: Volts. 

 

11.1 Gun object constants 

11.1.1 Enum HTState 
 
Value Description 
htOff The high tension is off 
htOn The high tension is on 
htDisabled The high tension is disabled, cannot be switched on by software command
 
  



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

32

12 The Illumination object 
 Most of the properties of the illumination object are dependent on the microscope's mode. They 
distinguish between three optical modes: 
1. the microscope is either at low ‘magnification’ (LM or LAD), 
2. at higher ‘magnification’ (Mi, SA, Mh, D) in nanoprobe or 
3. at higher ‘magnification’ (Mi, SA, Mh, D) in microprobe 
 
Note that the illumination system is independent of the projection system and thus insensitive to 
diffraction or imaging mode; hence the mixture of diffraction and imaging submodes. If a transition 
between two of these three modes occurs, then the properties will seem to have changed their values, 
which reflects their existence per mode. 
 
Property Description 
mode independent  
Mode [IlluminationMode], read/write 

Mode of the illumination system (either nanoprobe or microprobe). 
(Nearly) no effect for low magnifications (LM). 

DFMode [DarkFieldMode], read/write 
Holds information about whether microscope is in dark field mode and 
if so, which coordinates are used. 

BeamBlanked [Boolean], read/write 
Activates/deactivates the beamblanker. 

mode dependent  
CondenserStigmator [Vector], read/write 

The condenser stigmator setting. Units: logical, range: -1.0 to +1.0. 
SpotsizeIndex [Long], read/write 

The spot size index (usually ranging from 1 to 11). 
Intensity [Double], read/write 

Intensity value of the current mode (typically ranging from 0 to 1.0, but 
on some microscopes the minimum may be higher.) 

C3ImageDistanceParallelOffset [Double], read/write 
Value of the C3 image distance parallel offset for current mode. This 
value (three-condenser Titan only) takes the place previously of the 
Intensity value. The Intensity value changed the focusing of the 
diffraction pattern at the back-focal plane (MF-Y in Beam Settings 
control panel) but was rather independent of the illumination optics. As 
such it changed the size of the illumination but the illuminated area 
parameter was not influenced. To get rid of this problematic bypass, 
the C3 image distance offset has been created which effectively does 
the same focusing but now from within the illumination optics so the 
illuminated area remains correct. 

IntensityZoomEnabled [Boolean], read/write  
Activates/deactivates the intensity zoom in the current mode. This 
function only works, when it has been initialized by means of the 
microscope alignments (it needs to know at which intensity setting the 
spot is focused). 

IntensityLimitEnabled [Boolean], read/write   
Activates/deactivates the intensity limit in the current mode. This 
function only works, when it has been initialized by means of the 
microscope alignments (it needs to know at which intensity setting the 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

33

spot is focused). 
Shift [Vector], read/write 

Beam shift relative to the origin stored at alignment time. Units: meters.
Tilt [Vector], read/write 

Dark field beam tilt relative to the origin stored at alignment time. Only 
operational, if dark field mode is active. Units: radians, either in 
Cartesian (x,y) or polar (conical) tilt angles. The accuracy of the beam 
tilt physical units depends on a calibration of the tilt angles. 
 
 

RotationCenter [Vector], read/write 
Corresponds to the alignment beam tilt value. Units are radians, range 
is ± 0.2-0.3rad. Do not confuse RotationCenter with dark field (Tilt). Be 
aware that this is an alignment function. 
 

StemMagnification [Double], read/write 
The magnification value in STEM mode. You can change the 
magnification only in discrete steps (the same as on the microscope). 
If you specify a value that is not one of those steps, the scripting will 
select the nearest available step. 

StemRotation [Double], read/write 
The STEM rotation angle (in radians). 

 
The following properties are specific to the Titan microscope.      
 
Property Description 
CondenserMode [CondenserMode] read/write 

Mode of the illumination system, parallel or probe. 
IlluminatedArea [Double] read/write 

The size of the illuminated area (in meters). Accessible only in Parallel 
mode. 

ProbeDefocus [Double] read/write 
The amount of probe defocus (in meters). Accessible only in Probe mode. 

ConvergenceAngle [Double] read/write 
The convergence angle (in radians). Accessible only in Probe mode. 

 
 
Method Description 
Normalize 
([in] 
IlluminationNormalization 
Norm) 

[Void]  
Normalizes the condenser lenses and/or the minicondenser lens, 
dependent on the choice of ‘Norm’. 

 

12.1 Illumination object constants 

12.1.1 Enum IlluminationMode 
 
Value Description 
imMicroprobe Microprobe mode 
imNanoprobe Nanoprobe mode 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

34

12.1.2 Enum CondenserMode (Titan only) 
 
Value Description 
imParallelIllumination Parallel illumination mode 
imProbeIllumination Probe illumination mode 
  
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

35

12.1.3 Enum DarkFieldMode 
 
Value Description 
dfOff microscope is in bright field mode 
dfCartesian dark field mode, beam tilt angles are given in x and y tilt directions 
dfConical dark field mode, beam tilt angles are given as radial tilt and rotation angles 
 

12.1.4 Enum IlluminationNormalization 
 
Value Description 
nmSpotsize normalize lens C1 (spotsize) 
nmIntensity normalize lens C2 (intensity) + C3 
nmCondenser normalize C1 + C2 + C3 
nmMiniCondenser normalize the minicondenser lens 
nmObjectivePole normalize minicondenser and objective 
nmAll normalize C1, C2, C3, minicondenser + objective 
 

13 The InstrumentModeControl object 
 
Property Description 
StemAvailable [Boolean], read only 

Returns whether themicroscope has a STEM system or not. 
InstrumentMode [InstrumentMode], read/write 

Switches between TEM and STEM modes. 
 

13.1  InstrumentModeControl object constants: 

13.1.1 Enum InstrumentMode: 
 
Value Description 
InstrumentMode_TEM TEM mode 
InstrumentMode_STEM STEM mode 
 
 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

36

14 The Projection object 
Some of the properties of the projection object are dependent on the microscope's optical mode. There 
are 5 types of mode dependencies (the two last of which are only introduced by functions created for 
easier handling of the modes) : 
 
Type A differentiates between 5 TEM modes for every lens program:  
• diffraction LAD (the mode is reached, when the projector is switched to diffraction from LM imaging) 
• diffraction D (the mode is reached, when the projector is switched to diffraction from imaging with 

higher magnifications) 
• imaging with low magnifications (LM) 
• imaging with higher magnification and illumination system in microprobe mode 
• imaging with higher magnification and illumination system in nanoprobe mode 
 
Type B differentiates between 2 modes (irrespective, of whether microscope is switched into diffraction 
or imaging): 
• low ‘magnification’ (LM, LAD) 
• higher ‘magnification’ (Mi...Mh, D) 
 
Type C  differentiates between 3 modes: 
• low ‘magnification’ (LM or LAD), 
• higher ‘magnification’ (Mi, SA, Mh, D) in nanoprobe 
• higher ‘magnification’ (Mi, SA, Mh, D) in microprobe 
 
Type D  differentiates between 3 modes: 
• diffraction LAD 
• diffraction D 
• imaging 
 
Type E   differentiates between 6 modes: 
• the four imaging submodes LM, Mi, SA, Mh 
• the two diffraction submodes LAD, D 
 
If a transition between modes occurs, then the properties will seem to have changed their values, which 
reflects their existence per mode. 
 
Property Description 
mode independent  
Mode [ProjectionMode], read/write 

Main mode of the projection system (either imaging or diffraction). 
SubMode [ProjectionSubMode], read only 

Submode of the projection system (either LM, Mi, ..., LAD or D). The 
imaging submode can change, when the magnification is changed. 

SubModeString [String], read only 
Submode of the projection system, given as a string. To be used as 
alternative to ‘SubMode’. 

LensProgram [LensProg], read/write 
The lens program setting (currently EFTEM or Regular). This is the third 
property to characterize a mode of the projection system. 
 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

37

Magnification [Double], read only 
The reference magnification value (screen up setting). Use the 
‘MagnificationIndex’ to change it, since the magnification can only be 
changed in discrete steps and the values may vary. 
0, if microscope is in diffraction. 

MagnificationIndex [Long], read/write 
The magnification values are indexed (from minimal to maximal 
magnification). Increasing or decreasing the index is what the 
magnification button on the hand panel does. In the process the imaging 
‘SubMode’ may change. Note: On some microscopes the magnification 
ranges of LM and Ml submodes may overlap. Thus at this submode 
border the magnification value does not necessarily rise with increasing 
index. 
0, if microscope is in diffraction. 

ImageRotation [Double], read only 
The rotation of the image or diffraction pattern on the fluorescent screen 
with respect to the specimen. Units: radians. 

DetectorShift [ProjectionDetectorShift], read/write 
Sets the extra shift that projects the image/diffraction pattern onto a 
detector. 

DetectorShiftMode [ProjDetectorShiftMode], read/write 
This property determines, whether the chosen DetectorShift is changed 
when the fluorescent screen is moved down. 

mode dependency type A  
Focus [Double], read/write 

Focus setting of the currently active mode. Range: maximum between -1.0  
(= underfocussed) and 1.0 (= overfocussed), but the exact limits are mode 
dependent and may be a lot lower. 

Defocus [Double], read/write 
Defocus value of the currently active mode. Changing ‘Defocus’ will also 
change ‘Focus’ and vice versa. ‘Defocus’ is in physical units (meters) and 
measured with respect to a origin that can be set by using 
‘ResetDefocus()’. 

ObjectiveExcitation [Double], read only 
The excitation of the objective lens in percent. 

mode dependency type B  
CameraLength [Double], read only 

The reference camera length (screen up setting). Use the 
‘CameraLengthIndex’ to change it, since it can only be changed in discrete 
steps and the values may vary, for example with high tension. 
always 0, if microscope is in imaging. 

CameraLengthIndex [Long], read/write 
The camera length values are indexed (from minimal to maximal camera 
length). Setting the Index thus is equivalent to setting the camera length. 
The series of camera length values for LAD and for D are not identical. 
always 0, if microscope is in imaging. 

ObjectiveStigmator [Vector], read/write 
The objective stigmator setting. Range: -1.0 to +1.0 for x and y. 

DiffractionStigmator [Vector], read/write 
The diffraction stigmator setting. Range: -1.0 to +1.0 for x and y. 
 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

38

DiffractionShift [Vector], read/write 
The diffraction pattern shift with respect to the origin that is defined by 
alignment. Units: radians. 

ImageShift [Vector], read/write 
The image shift with respect to the origin that is defined by alignment. 
Units: meters. 

mode dependency type C  
ImageBeamShift [Vector], read/write 

Image shift with respect to the origin that is defined by alignment. The 
apparent beam shift is compensated for, without affecting the Shift-
property of the Illumination-object. Units: meters. 
Attention: Avoid intermixing ImageShift and ImageBeamShift, otherwise it 
would mess up the beam shift (=Illumination.Shift). If you want to use both 
alternately, then reset the other to zero first. 

ImageBeamTilt [Vector], read/write 
Beam tilt with respect to the origin that is defined by alignment (rotation 
center). The resulting diffraction shift is compensated for, without affecting 
the DiffractionShift-property of the Projection object. For proper operation 
requires calibration (alignment) of the Beam Tilt - Diffraction Shift (for 
more information, see a0050100.htm on the TEM software installation CD 
under privada\beamtiltdiffshift). Units: radians. 
Attention: Avoid intermixing Tilt (of the beam in Illumination) and 
ImageBeamTilt. If you want to use both alternately, then reset the other to 
zero first. 

mode dependency type D  
ProjectionIndex [Long], read/write 

This index always contains a value. It corresponds to the camera length 
index or the magnification index, dependent on the microscope mode. 

mode dependency type E  
SubModeMinIndex [Long], read only 

The minimum ProjectionIndex of the current submode. Check this if you 
want to change the ProjectionIndex or MagnificationIndex but do not want 
to leave the submode. 

SubModeMaxIndex [Long], read only 
The maximum ProjectionIndex of the current submode. Check this if you 
want to change the ProjectionIndex or MagnificationIndex but do not want 
to leave the submode. 

 
   
Method Description 
ResetDefocus() [Void] 

Resets the current ‘Defocus’ to 0 nm. This does not change the ‘Focus’ 
value (the focussing lens current). Use it when the image is properly 
focussed to adjust the ‘Defocus’ scale. 

ChangeProjectionIndex  
([in] Long Steps) 

Changes the current Index by ‘Steps’. 

Normalize ([in] 
ProjectionNormalization 
Norm) 

[Void] 
Normalizes the objective lens or the projector lenses, dependent on the 
choice of ‘Norm’. 

      



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

39

14.1 Projection object constants 

14.1.1 Enum ProjectionMode 
 
Value Description 
pmImaging Projector in imaging mode 
pmDiffraction Projector in diffraction  mode 
 

14.1.2 Enum ProjectionSubMode 
 
Value Description 
psmLM Imaging mode, low magnification 
psmMi Imaging mode, lower intermediate magnification range 
psmSA Imaging mode, high magnification 
psmMh Imaging mode, highest magnification range 
psmLAD Diffraction, LAD mode (the mode entered from LM imaging) 
psmD Diffraction mode as entered from higher magnification imaging modes 
  

14.1.3 Enum LensProg 
 
Value Description 
lpRegular The default lens program 
lpEFTEM Lens program used for EFTEM (energy-filtered TEM) 
  

14.1.4 Enum ProjectionDetectorShift 
 
Value Description 
pdsOnAxis Does not shift the image/diffraction pattern 
pdsNearAxis Shifts the image/diffraction pattern onto a near-axis detector/camera 
pdsOffAxis Shifts the image/diffraction pattern onto an off-axis detector/camera 
 

14.1.5 Enum ProjDetectorShiftMode 
 
Value Description 
pdsmAutoIgnore The 'DetectorShift' is set to zero, when the fluorescent screen moves 

down. When it moves up again, what happens depends on what detector 
TEM thinks is currently selected. Take care!. 

pdsmManual The detectorshift is applied as it is chosen in the 'DetectorShift'-property 
pdsmAlignment The detector shift is (temporarily) controlled by an active alignment 

procedure. Clients cannot set this value. Clients cannot set the 
'DetectorShiftMode' to another value either, if this is the current value. 
They have to wait until the alignment is finished. 

  



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

40

14.1.6 Enum ProjectionNormalization 
 
Value Description 
pnmObjective Normalize objective lens 
pnmProjector Normalize Diffraction, Intermediate, P1 and P2 lenses 
pnmAll Normalize objective, diffraction, intermediate, P1 and P2 lenses 
  
   
 
 
  
 
  
  
 
 
   
  
 
  
  
 
  
  
 
 
  
 
   



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

41

15 The Stage object 
  
Property Description 
Status   [StageStatus], read only 

The current state of the stage. Check this to determine the whether the 
stage is ready to perform a ‘GoTo’ or a ‘MoveTo’. 

Position [StagePosition], read only 
The current position of the stage. (Changing the position can be done in 
various ways. Use the ‘GoTo’ and ‘MoveTo’ Methods described below.) 

Holder [StageHolderType], read only 
The current specimen holder type. 

AxisData ([in] mask StageAxes) 
 [StageAxisData], read only 
Interface to a StageAxisData object that contains the minimum and 
maximum values available for the particular axis. 

 
 
Method Description 
GoTo  
([in] StagePosition 
NewPosition, 
[in] StageAxis  AxesBits) 
 

[Void] 
Makes the holder move to the position given by ‘NewPosition’. 
‘AxesBits’ contains information about which axes are to be used to 
perform the movement. This is useful to suppress unnecessary 
movements of the holder due to fluctuations in position measurement. 
Also, you do not have to bother to give the correct parameters for axes-
settings that you do not want to change. (In Delphi, this function is 
automatically renamed to GoTo_, because GoTo is a reserved keyword.) 

GoToWithSpeed  
([in] StagePosition 
NewPosition, 
[in] StageAxis  AxesBits, 
[in] Speed Double) 
 

[Void] 
Makes the holder move to the position given by ‘NewPosition’. 
‘AxesBits’ contains information about which axes are to be used to 
perform the movement. This is useful to suppress unnecessary 
movements of the holder due to fluctuations in position measurement. 
Also, you do not have to bother to give the correct parameters for axes-
settings that you do not want to change. (In Delphi, this function is 
automatically renamed to GoTo_, because GoTo is a reserved keyword.) 
The speed is a fraction of the standard speed setting (so 1.0 means the 
standard speed setting). In the Delphi Exampler program the lower limit 
allowed is 0.1% (but this limit is not in scripting itself). 

MoveTo 
([in] StagePosition 
NewPosition, 
[in] StageAxis  AxesBits) 

[Void] 
Makes the holder move in a way that all possible positions can be reached 
without touching the objective pole. Actually, the following sequence of 
movements is performed (a, b denote alpha and beta tilts, x,y,z the x,y 
and height positions, large letters the new position): 
 
b->0, a->0, z->Z, x,y->X,Y, 0->A, 0->B. 
 
If ‘AxesBits’ determines that a tilt axis (A or B) is not to be included into the 
movement, then it will still move, but return to its old setting after X,Y,Z 
have finished their movement. 

 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

42

15.1 StageAxisData object 
The StageAxisData object can be used to retrieve the minimum and maximum values allowed for a 
particular stage axis. This is really only useful for the dual-axis tomography holder as there the b tilt 
(which controls the flipflop motion) has hardware-dependent values. In all other cases the minimum and 
maximum values are as follows: 
• X and Y -1000 to +1000 (micrometers) 
• Z -375 to 375 (micrometers) 
• a -80 to +80 (degrees) 
• b -29.7 to +29.7 (degrees) 
 
 
Property Description 
MinPos   [Double], read only 

The lowermost value of the stage position allowed on the axis. 
MaxPos [Double], read only 

The uppermost value of the stage position allowed on the axis. 
UnitType [MeasurementUnitType], read only 

The unit (meters or radians) of the MinPos and MaxPos values 
 

15.2 Stage object constants 

15.2.1 Enum StageStatus 
 
Methods Description 
stReady The stage is ready (capable to perform all position management functions) 
stDisabled The stage has been disabled either by the user or due to an error. 
stNotReady The stage is not (yet) ready to perform position management functions for 

reasons other than already accounted for by the other constants 
stGoing The stage is performing a ‘GoTo()’ 
stMoving The stage is performing a ‘MoveTo()’ 
stWobbling The stage is wobbling 
 

15.2.2 Enum StageAxes 
The ‘GoTo’ and ‘MoveTo’ methods require a parameter (of type long) that contains bitwise information 
about which axis is to be involved in the movement. The bit order is BAZYX , so bit 0 contains the 
information about whether the X-axis is involved, bit 4 contains the information about the B axis. The 
members of the ‘StageAxes’ enumeration can be used instead of calculating with bits. You can combine 
them by bitwise  ‘OR’s (i.e. in JScript: MyAxBits = (axisXY | axisA | axisB) to allow the X,Y,A,B axis to 
move, but leave the Z constant. 
 
Value Description 
axisX      (= 1) Use X-axis 
axisY      (= 2) Use Y-axis 
axisXY    (= 3) Use X- and Y-axis 
axisZ      (= 4) Use Z-axis 
axisA     (= 8) Use alpha tilt-axis 
axisB     (=16) Use B-axis, usually the beta tilt, but on Dual-Axis Tomography holders this 

is the second (rotation or flip-flop) axis. 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

43

15.2.3 Enum StageHolderType 
  
Value Description 
hoInvalid The ‘invalid’ holder. No holder has been selected yet or the current 

selection has become invalid 
hoSingleTilt Single tilt holder 
hoDoubleTilt Double tilt holder 
hoNone Holder is removed 
hoPolara Non-removable Polara holder 
hoDualAxis Dual-axis tomography holder 
  

15.2.4 Enum MeasurementUnitType 
  
Value Description 
MeasurementUnitType_Unknown Unknown unit type 
MeasurementUnitType_Meters Unit type is meters (linear axes) 
MeasurementUnitType_Radians Unit type is radians (tilt axes) 
 
   



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

44

16 The TemperatureControl object 
The Temperature controller is a system that monitors temperatures and refrigerant levels for the 
AutoLoader and column dewars. 
 
Property Description 
TemperatureControlAvailable [Boolean], read only 

Returns whether the Temperature controller is available on the 
microscope. 
 

RefrigerantLevel([in] rl: 
RefrigerantLevel) 

[Double], read only 
The level of coolant of the dewar specified. 
 

DewarsRemainingTime [Long], read only 
Returns remaining time until the next (automatic) dewar refill.  
Returns -1 if no refill is scheduled (e.g. All room temperature, or no 
dewar present). 
 

DewarsAreBusyFilling [Boolean], read only 
Returns TRUE if any of the available dewars is currently busy filling. 

 
 
Method Description 
ForceRefill [Void] 

Forces a refill of the refrigerant. 
Notes: 
1. This function takes considerable time to execute. 
2. If the refrigerant level in the dewar specified is above 70% then 
ForceRefill will not do anything and return almost immediately. 

 

16.1 Refigerant level constants  

16.1.1 Enum RefrigerantLevel 
 
Value Description 
RefrigerantLevel_AutoLoaderDewar The dewar of the AutoLoader 
RefrigerantLevel_ColumnDewar The dewar on the microscope column 
RefrigerantLevel_HeliumDewar The liquid-Helium dewar 
 
  



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

45

17 The UserButton object 
‘UserButton’ objects are members of the ‘UserButtons’ collection: 
 
var MyL1 = MyTem.UserButtons("L1") 
 
retrieves an object that represents -and references to- the user button L1 (supposing that ‘MyTem’ is an 
instance of an ‘Instrument’ object). 
 
Property Description 
Name [String], read only 

The name of the button (i.e. "L1", "L2", etc.). 
Label [String], read only 

The current label that is assigned to the button (not necessarily assigned 
by your script) 

Assignment [String], read/write 
The script-assigned label of the button. Setting this property directs the 
events generated by use of the button to the script. If the script has made 
an assignment, then ‘Assignment’ will equal ‘Label’, if not temporarily 
overwritten by somebody else, for example an alignment procedure. (In 
that case, no events will be received.) Default value = "". Setting this 
property to an empty string or a string consisting only of blanks (that would 
be invisible in the UI) restores the situation that was there, before the 
script took control over the button. 

  
 
Event Description 
Pressed() Event that is raised when the button is pressed. 
   



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

46

 

18 The Vacuum object 
  
Property Description 
Status [VacuumStatus], read only 

Status of the vacuum system (see below). 
ColumnValvesOpen [WordBool], read/write 

The status of the column valves. 
PVPRunning   [WordBool], read only 

Checks whether the prevacuum pump is currently running (consequences: 
vibrations, exposure function blocked or should not be called). 

Gauges Collection of gauge objects, giving information about the actual pressures. 
 
 
Method Description 
RunBufferCycle() [Void] 

Runs a pumping cycle to empty the buffer. This function may take quite 
some time, so be careful when using it in a single-threaded application 
with user interface. (The program appears to be hanging while it waits for 
the function to return.) 

  

18.1 Constants: 

18.1.1 Enum VacuumStatus: 
 
Value Description 
vsUnknown Status of vacuum system is unknown 
vsOff Vac uum system is off 
vsCameraAir Camera (only) is aired 
vsBusy Vacuum system is busy, that is: on its way to ‘Ready’, ‘CameraAir’, etc. 
vsReady Vacuum system is ready 
vsElse Vacuum is in any other state (gun air, all air etc.), and will not come back 

to ready without any further action of the user 
 
  
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

47

19 The utility objects 
‘Utility’ objects are used to handle compound (or multi-dimensional) properties. They can be created by 
your script (except for the ‘gauge’ that is ‘read only’), but since they are specific TEM objects, this 
creation is also handled by the main ‘Instrument’ object. In JScript this may look as follows (supposed 
that your ‘Instrument’ is named ‘MyTem’: 
 
var MyVector = new MyTem.Vector(2.0,3.0) 
 
This code creates a TEM vector object MyVector that is initialized with (2.0,3.0). 
Of course, reading a compound property, for example 
 
var MyOtherVector = MyTem.Gun.Shift 
 
will also return an instance of an utility object, in this case a vector containing the actual gun shift. 
 
Utility object Description 
Vector Object used to access 2-dimensional compound properties 
StagePosition Object used to read and set the position of the stage 
Gauge Object used to read information about pressures and the status of the 

corresponding measurement devices 
 

19.1 The Gauge (utility object) 
The gauge objects are used to retrieve information about the vacuum system measurement devices and 
the actual pressures measured with them. Since this a ‘read only’ task, you cannot create instances of 
this utility object yourself. ‘Gauge’ objects are always members of the vacuum systems ‘Gauges’ 
collection: 
 
var MyGauge = MyTem.Vacuum.Gauges("P1") 
 
This retrieves the latest pressure and status information for the vacuum buffer. ‘P1’ is the name of the 
measurement device associated with the buffer, as you can see from the TEM vacuum overview. 
 
Note: On Tecnai systems so called ‘virtual gauge elements’, named ‘PXX’, were supported where 
XX represents a number. For instance ‘P4’ could be used instead of ‘IGP1’. Such virtual/pseudo 
names are no longer supported – the gauge name as it appears on the user interface must be 
used. 
 
  
Property Description 
Name [String], read only 

Name of the gauge. 
Status [GaugeStatus], read only 

The status of the gauge. It is important for the interpretation of the 
pressure values. 

Pressure [Double], read only 
Last measured pressure for this gauge. Units: Pascal 

PressureLevel [GaugePressureLevel], read only 
Indicates, in which range the pressure lies. Actions of the vacuum system 
depend on this property. 

 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

48

 
  
Method Description 
Read [Void] 

Forces a read of the pressure level. Execute before retrieving the 
pressure, otherwise the pressure may not be up-to-date. 

 

19.1.1 Gauge object constants 

19.1.1.1 Enum GaugeStatus: 
 
Value Description 
gsUndefined No information on the gauge available 
gsUnderflow Underflow, pressure is lower than can be measured with this gauge, the 

measurement is not interpretable 
gsOverflow Overflow, pressure is higher than can be measured with this gauge, the 

measurement is not interpretable 
gsValid Valid, the pressure measurement is valid and interpretable 
gsInvalid Invalid, the pressure measurement is invalid and not interpretable 
  

19.1.1.2 Enum GaugePressureLevel 
The pressure range for a every gauge is divided into four regions (low.....high). Depending on the gauge, 
a change in pressure - and thus a switching from one level to another - may result in an action of the 
vacuum system. (Example: On the Tecnai a buffer cycle will start, when the gauge ‘P1’ reaches 
plGaugePressurelevelMediumHigh.) 
 
Value Description 
plGaugePressurelevelUndefined Gauge is not active 
plGaugePressurelevelLow Lowest pressure range 
plGaugePressurelevelLowMedium Low to medium pressure range 
plGaugePressurelevelMediumHigh Medium to high pressure range 
plGaugePressurelevelHigh Highest range 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

49

19.2 The StagePosition (utility object) 
  
Property Description 
X [Double], read/write 

Position of X-axis, in meters. 
Y [Double], read/write 

Position of Y-axis, in meters. 
Z [Double], read/write 

Position of Z-axis, in meters. 
A [Double], read/write 

Position of A-axis (alpha-tilt), in radians 
B [Double], read/write 

Position of B-axis (beta-tilt), in radians 
 
 
Method Description 
GetAsArray 
([out] Double[5] Position) 

[void] 
Returns the properties of the StagePosition as an array of 5 doubles. The 
ordering is [X,Y,Z,A,B]. 

SetAsArray 
([in] Double[5] Position) 

[void] 
Sets the properties of the StagePosition from an array of 5 doubles. The 
ordering is [X,Y,Z,A,B]. 

 

19.3 The Vector (utility object) 
This is a general object used to retrieve and set two-dimensional properties, the components of which 
have to be read or set simultaneously. 
 
The vector object must be used for tilt, shift, and stigmator properties. X and Y must then be given in the 
appropriate units (ie radians, meters or logical). 
  
Property Description 
X [Double], read/write; 

The x value. 
Y [Double], read/write; 

The y value. 
 
 
  



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

50

20 TEM constants 
 TEM-specific constants are defined in the following enumerations that are used by the objects in the 
right column of the table: 
 
 

enum object 
AcqImageCorrection CCDAcqParams object 
AcqImageSize CCDAcqParams object, 

STEMAcqParams object 
CassetteSlotStatus AutoLoader object 
DarkFieldMode Illumination object 
GaugeStatus Gauge object 
GaugePressureLevel Gauge object 
HightensionState Gun object 
IlluminationMode Illumination object 
IlluminationNormalization Illumination object 
InstrumentMode InstrumentModeControl object 
LensProg Projection object 
MeasurementUnitType StageAxisData object 
MinicondenserMode Illumination object 
ProjDetectorShiftMode Projection object 
ProjectionDetectorshift Projection object 
ProjectionMode Projection object 
ProjectionNormalization Projection object 
ProjectionSubMode Projection object 
RefrigerantLevel TemperatureControl object 
ScreenPosition Camera object 
StageHolderType Stage object 
StageStatus Stage object 
StageAxes Stage object 
TEMScriptingError All 
VacuumStatus Vacuum object 

 
  
 
  



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

51

21 TEM error codes 
There are TEM-specific error codes available for errors that are due to microscope specific error 
conditions and specific errors raised by the TEM software. There will also be support for retrieving more 
information about the error that occurred (descriptive string, source etc.). How this can be done is 
described in the chapter "Scripting in various languages". These error codes are the following: 

21.1 Enum TEMScriptingError: 
 
Value Description 
E_VALUE_CLIP a parameter exceeded its possible range, it is clipped to its highest or 

lowest allowed value 
E_OUT_OF_RANGE a parameter exceeded its possible range. The command is ignored. 
E_NOT_OK another error occured. Query the error object for more information. 
  
Only a few functions return these error codes. Mostly, standard Microsoft OLE-error codes are returned. 
However, they are used in a specific way. These standard codes are displayed below in hexadecimal 
format. 
Scripting languages may translate the standard error values into others, as indicated in the table below. 
In Delphi apparently the error codes cannot easily be retrieved, but the standard describing string is well 
available. These descriptions are pretty much the same for all languages and close to what the meaning 
of the error in the TEM-context is. Only for E_UNEXPECTED you will get a message like "catastrophic 
failure", which does not quite fit to the error description given in the table. 
 
Error C++ JScript VBScript VB Description 
E_UNEXPECTED 8000FFFF 8000FFFF 8000FFFF 8000FFFF This error is generally raised, 

if you do a function call that 
is not allowed in the current 
state of the microscope, and 
you could in principle have 
known about this because 
the information was 
available. 

E_NOTIMPL 80004001 800A01B
D 

1BD 1BD Function not yet 
implemented (Should not 
happen for TEM scripting 
functions). 

E_INVALIDARG 80070057 800A0005 5 5 The arguments you supplied 
for a function call are of the 
wrong type or out of range 

E_ABORT 80004004 80004004 80004004 11F An action was started (i.e. an 
exposure), but then aborted 

E_FAIL 80004005 80004005 80004005 80004005 Unspecified failure. 
E_ACCESSDENIED 80070005 800A0046 46 46 If this error is raised a TEM 

component cannot be 
accessed, either because it 
is not there or because a 
hardware or software of this 
component is in an error 
state. 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

52

22 TEM-specific issues 
When writing scripts for the TEM, it is of course important to keep in mind that there is a physical 
microscope involved. Changing a property of an adapter object mostly results in a physical action on the 
actual TEM. This also means that no matter how many objects of one type are created, be it in one or 
also in several scripts running in parallel, they finally all correspond to the same thing. And if somebody 
sitting at the microscope or another script decides to change microscope parameters, the properties of 
your objects may change without you knowing. Apart from this perhaps trivial -but easily forgotten- 
aspect there are some details about the TEM's inner structure that may be necessary to know when 
programming. 
 
We already introduced the 

• Microscope modes. 
This concept had to be known in order to understand the behavior of some objects properties. 
Occasionally you may run into trouble, because the TEM microscope does some things for you that you 
are not aware of: 

• Normalizations 
• TEM sessions 

It may also be worthwhile to have a look at the notion of 
• Synchronous functions 

Finally, consider 
• Setting parameters out of range 

 

22.1 Synchronous functions 
Although adapter-functions are programmed to be synchronous, the action of setting a property to a 
certain value may in some special cases trigger further reactions of the microscope. These cases are: 

22.1.1 Automatic normalization 
Certain changes in lens excitations trigger a normalization procedure that can take up to two seconds. 

22.1.2 Pole touch 
During movement of the stage (especially with a microscope equipped with UTWIN objective lens) a pole 
touch may be detected. The stage will then try to solve this problem. 
 
These are situations in which the microscope, or rather parts of it, sometimes behave as independent 
users themselves. This hampers the use of synchronous functions. But there are remedies. For the first 
situation they are explained in the section on Normalizations, the second situation can often be avoided 
by using ‘MoveTo’ in place of ‘GoTo’ in case you want to reach extreme positions of the stage. 

22.1.3 Setting the high tension 
Setting the high tension or switching it is considered done, when the command is delivered to the 
electronics (as is in fact also the case with most other commands). However, switching and setting the 
high voltage may need a considerable additional time. It also has to be checked whether the action was 
successful.    
 

22.2 Normalizations 
Many actions that change excitations of optical elements trigger normalization procedures to ensure 
reproducibility of the settings (since the optics contain magnetic lenses). You can examine the 
‘Normalizations’ control panel in the TEM user interface to get information about when normalization 
procedures are automatically initiated (see image below). 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

53

 
On the Tecnai these settings are user-dependent (note the checkboxes in the control cluster that allow 
individual settings to be made). The example in the image shows that -for this user- automatic 
normalizations are invoked for C1 and C2 condenser lenses, if the spotsize is changed. 
 
The automatic normalization procedures are done independently from any other action. They take about 
two seconds on Tecnai and five seconds on Titan. This disturbs the adapter's concept of using 
synchronous functions in order to allow a simple order of commands. 
 
Remedy: In scripting applications it can be helpful to disable automatic normalizations and invoke the 
necessary normalizations via the script, using the (synchronous) ‘Normalize()’ methods of the 
‘Illumination’ and ‘Projection’ objects. Do not forget to enable autonormalizations again before ending the 
application! 
 
Example: 
MyTem.AutoNormalizeEnabled = FALSE 
var Illum = MyTem.Illumination 
Illum.SpotsizeIndex = 3 
Illum.Normalize(nmCondenser) 
MyTem.AutoNormalizeEnabled = TRUE 
Please note that entering the alignment procedures via the TEM user interface overrides the setting of 
the ‘AutoNormalizeEnabled’-property. 
 

22.3 TEM sessions 
The TEM software architecture supports the concept of sessions and user levels. If a user is logging on 
(starting a session), user-specific data (preferences, alignment settings etc.) are read from the registry. 
User rights are determined as well. In turn, some data are updated when the user logs off again.  
Logging on/off here means, that somebody is actually starting up/closing down the user interface of the 
TEM microscope, and is not to be confused with logging on/off in Windows NT. 
 
You may have noticed, that already without a session started, that is without the TEM user interface 
running, your script can communicate with the TEM server. But because of the facts mentioned above, 
you may run into problems. So, for every application that does more than passive protocolling tasks, it is 
strongly recommended that a TEM session is initialized before the script is executed! 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

54

22.4 Setting parameters out of range 
Generally, if you set a certain property to a value that is valid by type (i.e. a double), but exceeds the 
physically allowed limits (i.e. setting the magnification to 2x) this property should take its maximal or 
minimal value. Exceptions from this rule can be expected if the action takes a lot of time and is probably 
erroneous anyway. In these cases an error will be raised. 
The stage, for example will not react on setting its x-position to +100mm, but will raise an error to 
indicate that something is wrong. 
 
This behavior is not yet implemented consistently in the microscope server. You will probably find 
properties that will not react at all, if you feed out of range parameters. To make things a little more 
difficult, it is not always easy to tell what the allowed range of values for a property is, because it may 
depend on the alignment settings of the microscope. 
One of the more complicated cases is the beam-deflection setting, for example. One single set of coils 
executes two different kinds of actions: beam shift and beam tilt. Both shift and tilt are further divided into 
an alignment-value (shift not accessible through the TEM scripting adapter; tilt = rotation center) and a 
user value (also accessible via the ‘Illumination’ object). Additionally the beam-deflection coils are 
affected by the alignment of the condenser stigmator. Shifts, tilts and stigmator adjustments are 
translated through pivot points into settings on the upper and lower deflection coils. These coils 
ultimately trigger an out-of-range response. This complexity makes it very difficult to predict what the 
actual limit is for a specific value. To determine the actual limit for a parameter that does not change on 
an attempt to set it to an out-of-range value, the following procedure can be used (in JScript code): 
 
//Applies to setting between -1 and +1 
//moving in positive direction 
var step = 0.1; 
var CurrentValue = ...... ; 
      // get the current setting 
do 
    var CheckValue = CurrentValue; 
    //try increase: 
    Currentvalue = CurrentValue + step; 
    if (Math.abs(Checkvalue - CurrentValue) < 1E-06) 
    { 
       //nothing happened - reduce stepsize 
       step = step/2; 
    } 
    else 
     { 
       step = step*2; 
    } 
while (Math.abs(step)< 1E-04); //value arbitrarily chosen 
 
It is advisable to rather check a property's value before relying on the success of an attempt to set it. 
Anyway, another script or human user could also in principle interfere at all times, so checking can never 
harm. 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

55

 

23   Property- and function- types 
Throughout this help, the types of properties (and also the return types of functions) have been 
described in a more or less symbolic way (for example as ‘Boolean’, ‘String’, ..). These descriptions differ 
from programming language to programming language and may thus not be clear to everybody. The 
following table holds a description and a ‘translation’ to common scripting and programming languages, 
that use typing (JScript and VBScript doe not declare the types of variables). 
 
‘Symbolic’ 
type used 
here 

Visual 
Basic 

Delphi C++ 
 

Description 

Boolean Boolean boolean BOOL a Boolean type (having values "TRUE" and 
"FALSE" that are actually transmitted as -1 
and 0) 

String String widestring BSTR 
(or _bstr_t) 

a wide, double-byte (Unicode) string on 32-
bit Windows platforms 

Long Long long long a 32 bit integer 
Double Double double double a 64 bit real 
Void - 

(sub) 
- (procedure) void keyword specifying that there is no return-

type 
Object Object ComObject IDispatch* a variable that refers to an object that has 

its own properties and methods. (Under 
water it contains a pointer to the default 
interface of something called a COM-object, 
where COM = component object model.) 

  
 
  



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

56

24 TEM scripting in C++ 
For the explanations in this chapter, it is assumed that you are going to create a scripting client using 
Microsoft Developer Studio (MSDEV) and the Microsoft Foundation Classes (MFC), as it is done in the 
example program delivered with the adapter. 

24.1 Import the dynamic link library 
In order to be able to compile your project (at least if you use the hard types defined in the adapter) you 
have to include the typelib (or the DLL): 
 
#import "stdscript.tlb" named_guids 
using namespace TEMScripting; 
 
The above statement assumes that the typelib is in the same directory as your source files. From the 
typelib, the compiler will generate the stdscript.tlh and .tli files that contain all necessary definitions and a 
number of wrapper-functions. You will then also get the full support of the ClassView and the IntelliSense 
mechanism. 
 
In C++, the names of the ‘objects’ can be different from what was written in the remainder of this help, 
because unlike most scripting languages, C++ knows the difference between objects and interfaces 
implemented by them. Due to details in the adapter's implementation that are meant to make its use 
consistent in scripting languages, you see that most interfaces are named as are the ‘objects’ in the 
remainder of this help file, but that, as a C++ user, you have to replace ‘Instrument’ by 
‘InstrumentInterface’ and Userbutton by ‘IUserButton’. 
Your application must also initialize the COM-libraries. Using MFC, this is typically done by the following 
code 
 
if (!AfxOleInit()) 
{ 
  AfxMessageBox(IDP_OLE_INIT_FAILED); 
  return FALSE; 
} 
 
that you have to add to your Applications ::InitInstance() if you did not check the ‘automation’-check box, 
when creating it. 

24.2 Create an ‘Instrument’ and get the secondary microscope object that you need 
The following piece of code shows one possible way to get access to the projection system and the 
stage: 
 
InstrumentInterfacePtr MyInstrument; 
ProjectionPtr          MyProjection; 
StagePtr               MyStage; 
MyInstrument.CreateInstance(_T("TEMScripting.Instrument.1")); 
MyProjection = MyInstrument->Projection; 
MyStage      = MyInstrument->Stage; 
 
Here we used smart, _com_ptr_t-derived pointers that are defined in the stscript.tlh and stdscript.tli files. 
(Their names all end with the postfix ‘Ptr’.) These pointers will do the interface reference-counting for 
you. We also made use of the ‘property-way’ of writing, as do most scripting languages. A ‘property’ 
appears in the ClassView as a public member variable. In effect it can be used as such, except that for 
example it may be ‘read only’, i.e. setting may not be permitted. 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

57

The above code is entirely equivalent to the use of the wrapper functions that is shown in the following 
piece of code: 
 
MyProjection = MyInstrument->GetProjection(); 
MyStage      = MyInstrument->GetStage(); 
 
In fact these functions are also called under water in the first example. The advantage of the wrapper 
functions is a convenient treatment of errors. If an error occurs, these functions will raise an exception (of 
type _com_error) that you can catch (see below) and that allows easy access to detailed error 
information. The wrapper functions also encapsulate BSTR (and VARIANT) types into _bstr_t-(and 
_variant_t-)objects that are easier to handle. You can of course also choose to go the hard way and 
use the ‘raw’ functions, that finally implement the properties: 
 
HRESULT hr; 
hr = MyInstrument->get_Projection(&MyProjection); 
hr = MyInstrument->get_Stage(&MyStage); 
 
For handling of errors you would then have to check the value of hr. If there is extended error 
information, you could query it via the IErrorInfo-interface. (See any book on COM on how to do 
this). 
In this last example, it does not matter, whether you use intelligent pointers or not, while in the first two 
examples you have to use them, otherwise you will experience difficulties with the reference count. Your 
objects might be destroyed due to the fact that the wrapper functions are designed in a way that results 
in a hidden Release()-call for the interface in question. This call is used to compensate for the 
AddRef() that is connected to the use of the ‘=’-operator for intelligent pointers. (This also implies, that 
you have to use ‘=’ and not the .Attach() method of the smart pointer class). 

24.3 Manipulate and read microscope parameters, invoke microscope actions 
To manipulate microscope parameters, you can in principle use all of the three different ways of writing 
assignment statements that are already described above (only that for simple properties you do not 
retrieve interface pointers here). In the following examples, we choose the way of writing that stresses 
the notion of ‘properties’, because it is the easiest to write and because it is most consistent with the 
remainder of this help. An example: 
 
MyProjection->MagnificationIndex = 5; 
 
This statement will set the magnification index to a new value (=5). 
 
long MyLong; 
MyLong = MyProjection->MagnificationIndex; 
 
reads the current value of the magnification index into the variable MyLong. 
‘Compound’ properties are read and set by using the TEM scripting adapter's ‘utility objects’.  Thus 
 
IlluminationPtr  MyIllumination; 
VectorPtr        MyShift; 
double           MyShiftX; 
MyIllumination = MyInstrument->Illumination; 
MyShift        = MyIllumination->Shift; 
MyShiftX       = MyShift->X; 
 
would read the full 2D-beam shift first and then store its x-component into the variable MyShiftX. Be 
aware that MyShift contains a copy of the actual beam shift. Thus, if you want to get the new actual 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

58

beam shift at a later moment in time, you have to ask for MyIllumination->Shift  again! Setting compound 
parameters then works as follows: 
 
VectorPtr       MyNewShift; 
MyNewShift    = MyIllumination->Shift; 
MyNewShift->X = 0; 
MyNewShift->Y = 0; 
MyIllumination->Shift = MyNewShift; 
 
The codes first gets a Vector-object by reading a 2D-property, assigns new values (0,0) and then copies 
it back, thus setting the beam shift to zero. 

24.4 Use the collections 
The adapter contains several collections, such as the ‘Gauges’ and the ‘UserButtons’ collections. 
Collection interfaces were originally designed for Visual Basic and are very convenient to use in scripting 
languages. The collections that come with the adapter are of fixed size, the script cannot add items. 
Reading items can be done as follows: 
 
GaugesPtr  MyGauges; 
GaugePtr   g; 
CString    sMsg; 
MyGauges = MyInstrument->Vacuum->Gauges; 
 
for (long i; i<MyGauges->Count; i++) 
{ 
    g     = MyGauges->GetItem(i); 
    CString sGauge; 
    sGauge.Format(_T("%s : %d\n"), g->Name, g->Pressure); 
    sMsg  = sMsg + sGauge; 
} 
AfxMessageBox(sMsg);  
 
loops over all gauges of the vacuum system and shows for each gauge the name and the pressure 
measured with it on a message box. 
In C++, you cannot use Item as a property (although other languages use it as such), i.e. 
 
g = MyGauges->Item(i); //does not work! 
 
does not work. Some scripting languages allow the use of the handy abbreviation MyGauges(i), because 
‘Item’ is the default property of a collection. This is also not allowed in C++. 
Probably you will often not know the index of the gauge, but its name, that you can read from the 
vacuum display of the microscope. GetItem therefore also accepts the gauge name as identifier, for 
example it is possible to write 
 
g = MyGauges->GetItem(_T("P1")); 
 
g now contains the information about the buffer tank pressure. Remember that the ‘gauge’ objects are 
utility objects, so to get the new actual values, you have to ask for a new collection again, thus to repeat: 
 
MyGauges = MyInstrument->Vacuum->Gauges; 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

59

24.5 Receive events from the user buttons 
To receive the events connected with pressing user buttons of the TEM control pads (L1,..,L3 and 
R1,..,R3), you have to do some work in C++. 
First, the class that implements the event interface should support OLE-automation. Thus the constructor 
should include the following statement: 
 
EnableAutomation(); 
 
Also you should use the following macros to your classes header file: 
 
DECLARE_DISPATCH_MAP() 
DECLARE_INTERFACE_MAP() 
 
The class wizard will generally add these for you. 
In the corresponding macros that actually define the interface and dispatch maps in your classes *.cpp-
file, you have to make some adjustments, however: 
 
a) In the dispatch map macro, you have to assign the button event Pressed to a function (called 
OnPressed in this example) of your CCmdTarget-derived, event- receiving class (which is called 
CMyButton here). 
 
BEGIN_DISPATCH_MAP(CMyButton, CCmdTarget) 
     DISP_FUNCTION(CMyButton, "Pressed", OnPressed, VT_EMPTY, VTS_NONE) 
END_DISPATCH_MAP() 
 
VT_EMPTY indicates that the function has no return parameter and VTS_NONE specifies that it does 
not take any data. 
 
b) The interface that contains the user button event has to be included into the INTERFACE_MAP 
macro: 
 
BEGIN_INTERFACE_MAP(CMyButton, CCmdTarget) 
     INTERFACE_PART(CMyButton, DIID_UserButtonEvent, Dispatch) 
END_INTERFACE_MAP() 
 
Furthermore you have to include code that handles the connection point mechanism used to receive 
COM-events. This might look as follows: 
 
//Assume, we alreay have a pointer pMyButton,pointing to a UserButton interface 
IConnectionPointPtr MyConnectionPoint; 
IConnectionPointContainerPtr 
        CPContainer = pMyButton; 
DWORD MyCookie; 
HRESULT hr = CPContainer->FindConnectionPoint (DIID_UserButtonEvent, 
&MyConnectionPoint); 
if (hr == S_OK) 
    //pass pointer of eventsink interface for callback by server 
    hr = MyConnectionPoint->Advise(GetIDispatch( TRUE), &MyCookie); 
 
And, in the end (for example in the destructor of your event-receiving class), you have to disregister with 
the connection point again. (For this reason you had to remember MyCookie): 
 
MyConnectionPoint->UnAdvise(MyCookie); 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

60

In order to make the above code work, you further have to overwrite the connection point's GetIID() 
function to retrieve the ID of the user button event-interface: 
 
IID CMyButton::GetIID () 
 { 
       return DIID_UserButtonEvent; 
} 
 
Having done all this,  
 
void CMyButton::OnPressed() 
{ 
   // Do whatever you want 
} 
 
will be called, whenever the corresponding button (the button "pointed to" by pMyButton) is pressed, 
provided you have activated it. Activation is done by assigning a string that will then also be displayed in 
the TEM UI: 
 
_bstr_t bstrNewAssignment(_T("any new assignment")); 
pMyButton->Assignment = bstrNewAssignment; 

24.6 Receive Events from a remote microscope server 
If you want your application to connect to a remote microscope server and also receive the userbutton 
events, you have to add a call to the function CoInitializeSecurity, that opens your application for calls 
from a remote system service. Just place the following code directly after the call to AfxOleInit (see 
above), because you have to call CoInitializeSecurity, before COM calls it under water for you: 
 
HRESULT sc = ::CoInitializeSecurity( 
           NULL, 
           -1, 
           NULL, 
           NULL, 
           RPC_C_AUTHN_LEVEL_NONE, 
           RPC_C_IMP_LEVEL_IMPERSONATE, 
           NULL, 
           EOAC_NONE, 
           NULL); 
if (FAILED(sc)) 
{ 
      TRACE1("CoInitializeSecurity failed!  (returned 0x%X)\nno remote events will be 
received", sc); 
} 
 
Also, the compiler switch _WIN32_DCOM has to be defined. Otherwise the relevant function declarations 
may not be included into your project. Thus if you get a compiler error, you might have to add the 
following line of code, preferably in stdafx.h: 
 
#define _WIN32_DCOM 

24.7 Errors and error handling 
Some of the microscopes functions may return (raise) an error. This can happen due to a physical 
reason, i.e. if the requested action is not possible at that moment. For example, you cannot ask the 
stage to perform a GoTo(), when it is wobbling or already moving. The high tension may not be 
switched on or raised under certain conditions and so forth. You may also have given parameters that 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

61

are out of range (in that case the stage for example would not move either). Generally, calls to another 
process (i.e. from your script to the TEM server) may fail occasionally. So be aware and do the error 
handling - otherwise your application might die! 
 
If an error is raised, then some global object may be filled with detailed information about the error. (In 
case of TEM errors that will be done for versions >1.0). The minimal information, that is always available, 
consists of an HRESULT error code and a system generated standard error message. Usually you will 
get an error code, a textual description and some more information as described below. The easiest way 
to obtain this information is to use the smart pointer classes and the wrapper functions that are defined in 
the stdscript.tli/tlh-files and that are automatically generated when the typelib or the dll is imported into 
your project. You can then use the C++ try/catch mechanism to catch the errors, as shown below. 
Suppose you want to move the stage to a new position that is calculated from the old one -just as an 
example, you could invent some code here: 
 
try 
 { 
   StagePositionPtr OldPos; 
   StagePositionPtr NewPos; 
   StagePtr         MyStage; 
   MyStage = MyInstrument->Stage; 
   OldPos  = MyStage->Position; 
   CalculateNewPosition(OldPos, &NewPos) // some function 
   MyStage->Goto(NewPos, axisXY); 
} 
catch ( _com_error E) 
{ 
   CString sDescription; 
   if (E.Description().length() > 0) 
   { 
     sDescription.Format(E.Description()); 
   } 
   else if (E.ErrorMessage() != NULL)  
   { 
    sDescription.Format(E.ErrorMessage()); 
   } 
   AfxMessageBox(Description); 
} 
 
In case of an error, a message-box will show a description of the error that ocurred. This will be either 
the application-delivered one, if available, or the standard message for the error code in question. 
Among others, the exception object supports the following handy methods: 
 
HRESULT       Error( )         // returns the HRESULT 
_bstr_t       Description( )   // server generated description 
_bstr_t       Source( )        // name of the source 
const TCHAR * ErrorMessage( )  // the standard message  
 
For more information check the _com_error's member functions. 
 
  
 
    



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

62

25 TEM scripting in Delphi 

25.1 Introduction and package installation 
The Delphi version used for the example program was the Professional edition of Delphi 4.0, but the 
other variants (including Desktop) will work as well. Delphi 3.0 (in all variants, including Desktop) will 
work as well, but when the example program is opened in Delphi 3.0 it will complain about some (in 
Delphi 3.0) unsupported properties. Look for the complaints from Delphi 3.0, then load the frm file as text 
(e.g. in Notepad) and remove the offending statements. 

25.2 Events 
Delphi (at least up to version 4.0) provides no direct handling of events. Instead you either have to write 
your own handler or (to keep it simple) use the EventSinkImport utility written by Binh Ly, which was 
used here (can be found on the world wide web). The Event Sink Import utility creates two files, a 
standard TLB (as obtained when using the Delphi Import Type Library function) and a separate Events 
unit. The Events unit for TEM Scripting was compiled into a package that can be installed, creating a 
non-visual component under ActiveX. 
Important note: The declaration of the Events component under the uses clause must always precede 
the declaration to the TLB itself. 
 
To install the Scripting Events component for Delphi 4.0: 
• Copy the TemScripting.bpl file to the Imports folder of the Borland\Delphi 4 folder. 
• Start Delphi. 
• Select Component, Install Packages. 
• Press the Add button and select the TemScripting.bpl file. 
• In the ActiveX tab of Delphi you will now find the UserButtonEvent component. 
 
To install the Scripting Events component for Delphi 3.0 (or Delphi 5.0) and higher: 
• Copy the TemScriptingEvents.pas and TemScriptingEvents.dcr file to the Imports folder of the 

Borland\Delphi 3 or 5 folder. 
• Start Delphi. 
• Select Component, Install Component. 
• Select the Into new package tab. 
• For unit file name, Browse to TemScriptingEvents.pas. 
• For Package file name Browse to the Imports folder and enter TemScripting.dpk. 
• For Package description enter Tem Userbutton Events 
• Press OK. The package will be compiled and installed. Save the package. 
• In the ActiveX tab of Delphi you will now find the UserButtonEvent component. 

25.3 Using the dynamic link library 
To use the type library, simply copy the TemScripting_TLB.pas file to the Imports folder of the 
Borland\Delphi folder. Then use Project, Add to project and select the TemScripting_TLB.pas. 

25.4 Example program 
The program has a form with a PageControl containing a number of TabSheets, each of which contains 
a logical group of TEM scripting functions (Optics, Stage, Vacuum, Camera). Since some of these 
groups do not have very many functions, their TabSheets are rather empty, but the overall size is 
determined by the fullest TabSheet. 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

63

The connection with the microscope is done in FormCreate for instrument and then per tab (checked 
against previous connection through the nil). This method makes startup faster and eliminates 
unnecessary connections. 
 
Some units, such as GetVersion are very small and can easily be combined into a program itself. Since 
they may be used repeatedly for more than one application, they are separated off for easy importing. 

25.4.1 Large fonts 
The TEM microscopes often have Windows set to Large Fonts. When this is the case, the size of all 
controls changes (if your program was designed with the PC set on Small Fonts) but typically not the 
form size (and controls will often be partially hidden). 
 
To correct for this, you can change the settings dependent on the font setting read at start up. The font 
size can be determined at run time by inspecting the PixelsPerInch property. It is 96 for Small Fonts and 
120 for Large Fonts. 
Note: The font in a statusbar may come out bold on Large Fonts when compiled in Small Fonts. Make 
sure you have the ParentFont property of the statusbar set to true and it will come out normal. 

25.4.2 About box and Version number 
The About box for the Exampler is located in the System Menu (under the icon of the Window). For 
displaying the version number, these settings are read from the program file itself (to make it only 
necessary to update the Version Info of the program and not have to keep two settings in sync. The 
About Box is called through the Windows function WMSysCommand. The Version number is read 
through the GetVersion unit. 

25.5 Create an ‘Instrument’ and get secondary microscope objects 
The following piece of code shows how to get access to the projection system and the stage: 
 
In the declaration section (under var) 
 
FTem       : Instrument; 
FProj      : Projection; 
FStage     : Stage; 
 
In a section accessed before any calls to the microscope are made (e.g. the FormCreate). In the 
example program the subunits (Projection, Stage, etc.) are connected per tab of the PageControl (the 
connections take time, so this reduces the number of connections to those necessary and reduces start-
up time). 
 
try 
  if FTem = nil then FTem := CoInstrument.Create; 
  try { no sense in trying this if the previous didn't work } 
    if FProj = nil then FProj := FTem.Projection; 
  except 
    on E : Exception do 
      Application.Messagebox( 
         pchar('Error - No connection to projection - '+E.Message), 
         'Error',mb_OK); 
  end; 
  try 
    if FStage = nil then FStage := FTem.Stage; 
  except 
    on E : Exception do 
      Application.Messagebox( 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

64

         pchar('Error - No connection to stage - '+E.Message), 
         'Error',mb_OK); 
  end; 
except 
  on E : Exception do 
    Application.Messagebox( 
       pchar('Error - No connection to instrument - '+E.Message), 
       'Error',mb_OK); 
end; 

25.6 Manipulate and read microscope parameters, invoke microscope actions 
Many of the values of the microscope can manipulated in one of two ways, using properties or using 
functions/procedures. 
If you use Delphi, you will be quite familiar with properties. Nevertheless, here is an example: 
 
FTem.MagnificationIndex := 5; 
 
‘Compound’ properties are read and set by using the TEM scripting adapter's ‘utility objects’.  Thus 
 
var 
  FShift : Vector; 
  FX     : double; 
 
In the code: 
 
FShift := FProj.ImageShift; 
FX     := FPos.X; 
 
would read the full 2D-image shift and then store the x-component in the variable FX. Be aware that 
FShift contains a copy of the image shift. If you want to get the new actual image shift at a later 
moment in time, you have to ask for FProj.ImageShift again! For setting the multidimensional 
properties, you have to create an instance of the utility object first (by reading it, as above), then put the 
right coordinate values into it and then assign it to the property. Example: 
 
var 
  FShift : Vector; 
 
In the code: 
 
FShift           := FStage.ImageShift; 
FShift.X         := 1e-6; { image shift is in meters } 
FShift.Y         := -1e-6; 
FProj.ImageShift := FShift; 
 
creates a new Vector object that is initialized with the coordinates as given and is then used to set the 
image shift to these values. (An exception here is the position of the stage, that is read only, because for 
moving the stage you have to use the Goto_ and MoveTo functions. The underscore on Goto is added 
by Delphi automatically because Goto is a reserved word). 

25.7 Use the collections 
The adapter contains several collections, such as the ‘Gauges’ and the ‘UserButtons’ collections. A 
collection is a convenient way to store things of the same kind. The collections that come with the 
adapter are of fixed size, the script cannot add items. Reading items can be done in several ways: 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

65

var 
  FTem      : Instrument; 
  FVacuum   : Vacuum; 
  FGauges   : Gauges; 
  FGauge    : Gauge; 
  indx      : integer; 
  td        : double; 
  OleVar1   : OleVariant; 
 
In the code: 
 
try 
  if FTem = nil then FTem := CoInstrument.Create; 
  try { no sense in trying this if the previous didn't work } 
    if FVacuum = nil then FVacuum := FTem.Vacuum; 
    if FGauges = nil then FGauges := FTem.Vacuum.Gauges; 
    for indx := 0 to FGauges.count-1 do 
    { fill labels, see example program - better } 
    begin 
      OleVar1 := indx; 
      FGauge := FGauges.Item[OleVar1]; 
      Label1.caption := FGauge.Name; 
      td := FGauge.Pressure; 
      with Label2 do 
        if td > 100 then caption := RealToStr(td,0) 
         { for RealToStr see example program } 
        else if td > 10 then caption := RealToStr(td,1) 
        else if td > 1 then caption := RealToStr(td,2) 
        else if td > 0.001 then caption := RealToStr(td,4) 
        else caption := RealToStr(td,8); 
      with Label3 do 
        case FGauge.Status of 
          gsUndefined : caption := 'Undefined'; 
          gsUnderflow : caption := 'Underflow'; 
          gsOverflow : caption  := 'Overflow'; 
          gsInvalid : caption   := 'Invalid'; 
          gsValid : caption     := 'Valid'; 
        end; 
    end; 
  except 
    on E : Exception do 
      Application.Messagebox( 
         pchar('Error - No connection to vacuum - '+E.Message),'Error',mb_OK); 
  end; 
except 
  on E : Exception do 
    Application.Messagebox( 
         pchar('Error - No connection to instrument - '+E.Message),'Error',mb_OK); 
end; 
 
loops over all gauges of the vacuum system. You can access single gauges via the ‘Item’-property of the 
collection (thus as MyGauges.Item[3] for example). Probably often you will not know the index of the 
gauge, but you can find out its name from the vacuum display of the microscope.  



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

66

The ‘Item’ property therefore also accepts the gauge name as identifier, for example it is possible to write 
 
  OleVar1 := 'P1'; 
  FGauge := FGauges.Item[OleVar1]; 
  { in Delphi you cannot use the name as in VB or JScript- 
    thus you cannot write FGauges[OleVar1] } 

25.8 Receive events from the user buttons 
To receive the events connected with pressing user buttons of the TEM Control pads (L1,..,L3 and 
R1,..,R3), you have to do the following in addition to the code for connecting to the instrument. First put a 
UserButtonEvent control on the form (as many as you need, so if you want L1..L3 you'll need three): 
 
FTem      : Instrument; 
FUserButtons : UserButtons; 
F_UB_L1      : UserButton; 
try 
  if FUserButtons = nil then 
  begin 
    FUserButtons := FTem.UserButtons; 
    F_UB_L1      := FUserButtons.Item[1]; 
    UserButtonEvent1.Connect(IUnknown (F_UB_L1) ); 
  end; 
except 
  ... 
end; 
 
When you double-click on the UserButtonEvent control, the following procedure will be added to the 
code: 
 
procedure TForm1.UserButtonEvent1Pressed (Sender: TObject; newval: Integer); 
begin 
  { whatever } 
end; 
 
The procedure UserButtonEvent1Pressed will be invoked when User button "L1" is pressed, 
provided you have activated the events by using the assignment-property of F_UB_L1.  

25.9 Receive events from a remote microscope server 
If you want your application to connect to a remote microscope server and also receive the userbutton 
events from that remote machine, you have to change the standard COM security setting. This has to be 
done, before COM automatically initializes security. The hard-work approach (doing everything yourself): 
Immediately after the first CoInitialize call you must call a function named 
CoInitializeSecurity as follows: 
 
OleCheck (CoInitializeSecurity (nil, 
                                -1, 
                                nil, 
                                nil, 
                                RPC_C_AUTHN_LEVEL_NONE, 
                                RPC_C_IMP_LEVEL_IMPERSONATE, 
                                nil, 
                                EOAC_NONE, 
                                nil)); 
 
where 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

67

 
RPC_C_AUTHN_LEVEL_NONE = 1 
RPC_C_IMP_LEVEL_IMPERSONATE = 3 
EOAC_NONE = 0 
 
When you are using the functionality from Binh Ly (comlib) you simply call 
 
InitializeComSecurity (alNone,ilImpersonate); 
 
In the examples, this call is made immediately in the FormCreate procedure. 

25.10 Errors and error handling 
Some of the microscopes functions may return (raise) an error. This can happen due to a physical 
reason, i.e. if the requested action is not possible at that moment. For example, you cannot ask the 
stage to perform a GoTo_, when it is wobbling or already moving. The high tension may not be switched 
on or raised under certain conditions, and so forth. You may also have given parameters that are out of 
range (in that case the stage for example would not move either). 
Generally, calls to another process (from your script to the TEM server) may fail occasionally. So be 
aware and do the error handling, typically by a   try except end; 
 
If an error is raised, then Exception.Message will be filled with detailed information about the error, if 
available. You can use this information for your error handling. See the error handling in the code 
examples above. 
 
  



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

68

 
   

26 TEM scripting in JScript 
This chapter explains how to use the TEM Scripting component from JavaScript / JScript client code. 
JScript code can be run in a browser as part of an HTML page/s (as illustrated in the examples). This 
approach allows a graphical user interface to be constructed relatively easily using HTML tags. 
 
An alternative approach would be to run a script using the Windows Scripting Host. 

26.1 Create the Instrument Object and get a secondary Microscope Object 
The following code demonstrates how to get access to the Projection System and the Stage. In this 
example, the code is included into HTML code. As an alternative, the JavaScript code could be located 
in a separate source file by using the SRC attribute of the HTML <SCRIPT> tag. 
 
Regarding the style of the code snippets below, in general global variables (that is, variables that ‘live’ 
beyond just one function) are given a prefix of ‘g_’. 
 
   
   <HTML> 
   ... 
   <BODY ONLOAD="Connect()"> 
   ... 
   <SCRIPT LANGUAGE="JavaScript"> 
   <!--// Variables used throughout the script 
   var g_myTem; 
   var g_myProjection; 
   var g_myStage; 
   ... 
 
   function Connect() 
   { 
      g_myTem        = new ActiveXObject("TEMScripting.Instrument"); 
      g_myProjection = g_myTem.Projection; 
      g_myStage      = g_myTem.Stage;  ...} 
   ... 
   --> 
   </SCRIPT> 
   </BODY> 
   </HTML>  
 

 
Notice that the Connect method is called when the HTML page is loaded. 

26.2 Using Microscope Parameters and invoking actions 
Within JScript the desired actions are often carried out using properties. For example, the following code 
sets the magnification index to 5. 
 
   
   g_myProjection.MagnificationIndex = 5; 
 

 
And the following copies the current magnification index into the variable ‘myMagIndex’. 
 
   
   var myMagIndex; 
   myMagIndex = g_myProjection.MagnificationIndex; 
 

 
Compound properties are read and set by using the TEM scripting ‘utility objects’. Consider the following. 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

69

 
   
   var myIllumination; 
   var myShift; 
   var myShiftX; 
 
   myIllumination = g_myTem.Illumination; 
   myShift        = myIllumination.Shift; 
   myShiftX       = myShift.X; 
 

 
This reads the full 2D Beam Shift and then stores its x component in the variable ‘myShiftX’. Note that 
‘myShiftX’ contains a copy of the actual Beam Shift. Thus, it is not necessarily the Beam Shift a few 
moments later – for that, the ‘Illumination must be retrieved again. 
 
Setting compound parameters can be done as follows. First a ‘Vector’ type is defined by retrieving a 
‘Vector’ constructor function object, then a new ‘Vector’ object is constructed and initialized to (0,0). This 
newly created object is then used to set the Beam Shift to 0. 
 
   
   var myNewShift; 
   var myVector; 
 
   myVector   = g_myTem.Vector; 
   myNewShift = new myVector(0,0); 
 
   g_myIllumination.Shift = myNewShift; 
 

 
The following code is an alternative approach that same the same effect, basically the Vector object is 
being retrieved from Illumination object. 
 
   
   myNewShift           = g_myIllumination.Shift; 
   myNewShift.X         = 0; 
   myNewShift.Y         = 0; 
    
   myIllumination.Shift = g_myNewShift; 
 

 
The above code is specific for JScript and works in the same fashion for the ‘StagePosition’ object. 

26.3 Use the collections 
TEM Scripting contains several useful collections that make some programming aspects easier. For 
example there are collections for Vacuum ‘Gauges’ and the ‘User Buttons’. A collection is a convenient 
way to store things. The collections that are of fixed size, e.g. items cannot be added. 
 
Reading the items in a collection is typically done as follows. 
 
   
   var myGauges; 
   var g; 
   var sMsg = ""; 
    
   myGauges = g_myTem.Vacuum.Gauges; 
 
   for (i=0; i<myGauges.Count; i++) 
   { 
      g = myGauges(i); 
      sMsg = sMsg + g.Name + ": " + g.Pressure; 
   } 
   alert(sMsg);  
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

70

 
The above code loops over all gauges of the Vacuum system and then shows a message box containing 
the names of all gauges and the pressures measured by them. 
 
A single gauge can be accessed via the ‘Item’ property of the collection (e.g. ‘myGauges.Item(3)’ for 
example). However, since ‘Item’ is the default property, you can use the array syntax as demonstrated in 
the above example (i.e. ‘myGauges(i)’). 
 
Typically a Gauge will be indexed by name rather than index, the name being the same name that is 
seen on the vacuum display of the Microscope software (peoui). The ‘Item’ property therefore also 
accepts the gauge name as identifier, for example it is thus possible to write: 
 
   
   g = myGauges("P1"); 
 

 
The variable ‘g’ now contains the information about the Buffer Tank pressure. Remember that the 
‘Gauge’ objects are utility objects, so to get the new actual values you have to ask for a new collection 
again. 
 
   
   myGauges = g_myTem.Vacuum.Gauges; 
 

 

26.4 Receive events from the user buttons 
The ‘Connect()’ function above (see section Create the Instrument Object and get a secondary 
Microscope Object) is an example of how to define event handlers that react to events originating from 
HTML elements. 
 
To define event handlers for TEM user button-events is a bit more involved. The following code shows 
how to do it (for the ‘L1’ button). 
 
   
   ... 
   var buttonL1; 
   ... 
 
   function Connect() 
   { 
      ... 
      buttonL1 = g_myTem.UserButtons("L1"); 
      ... 
 
      DefineEventHandlers(); 
      ... 
      ... 
   } 
 
   function DefineEventHandlers() 
   { 
      function buttonL1::Pressed() 
      { 
          //Do what you want to do here 
          ...  
      } 
   } 
 

 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

71

The above code is necessary to convince the Script Interpreter that ‘buttonL1’ is indeed a ‘UserButton’ 
object and that the subsequent definition of ‘buttonL1::Pressed()’ makes sense and implements the 
‘UserButton’ event. 
 
The main point is, that after assigning a ‘UserButton’ object to MyL1, the function 
‘DefineEventHandlers()’  is called that contains the definition of the event handler. Simply defining 
‘buttonL1::Pressed()’ inside or outside the ‘Connect()’ function would yield an error: 

‘buttonL1 not an object’ or ‘buttonL1 undefined’). 
 
‘buttonL1::Pressed()’ will be called whenever the corresponding TEM user button L1 is pressed, provided 
you have activated it for the script. This activation is done by assigning a string that will then also be 
displayed in the TEM user interface (peoui): 
 
   
MyL1.Assignment = "my new assignment"; 
 

 

26.5 Errors and error handling 
Some of the Microscope functions when called may return (raise) an error. 
 
• This can happen due to a physical reason, i.e. if the requested action is not possible at that moment. 

For example, you cannot ask the Stage to perform a ‘GoTo()’, when it is wobbling or already moving. 
Or the High Tension may not be switched on or its value changed in certain situations. 

• The function being called might also have been passed parameters that are out of range (in the case 
of the Stage this will result in it simply not moving). 

• Also calls from client programs to the Microscope Server process might fail due to some software 
communication problem. 

 
It is best to be aware of these possible problems and, depending on the objectives, program accordingly. 
 
If an error occurs an ‘Error’ object will be generated. Technically this is referred to as ‘an exception being 
thrown’. If this occurs then any client code (JavaScript in this case) needs to determine if such 
exceptions should be caught, and if so what should be done. 
 
The error contains an error code (a number) and a textual description. The JScript ‘try/catch’ mechanism 
can be used to catch such errors. The following example helps illustrate how. 
 
Suppose the HTML page contains a form with a button named ‘cmdGoto’, and a text area named 
‘TextErrors’. Pressing the button triggers movement of the stage to a new position that is calculated from 
the old one: 
 
   
   <FORM ID="theForm"> 
   ... 
   <INPUT TYPE=BUTTON NAME="cmdGoto" VALUE="Go" ONCLICK="OnGoto()"> 
   ... 
   <TEXTAREA NAME="TextErrors" COLS=.. ROWS=.. READONLY> 
   </TEXTAREA> 
   ... 
   </FORM> 
   ... 
   ... 
  
   function OnGoto() 
   { 
      try 
      { 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

72

         var newPos; 
         var oldPos; 
         var myStage; 
 
         myStage = g_myTem.Stage; 
         oldPos  = mystage.Position; 
 
         newPos  = new g_myTem.StagePosition(0,0,0,0,0); 
         CalculateNewPosition(oldPos, newPos) // some function 
         myStage.Goto(newPos, axisXY); 
      } 
      catch (Err) 
      { 
         var n; 
         var sn;      
         n  = new Number(Err.number); 
         sn = (n + Math.pow (2,32)).toString(16); // hex number as string 
         with (theForm.TextErrors) 
         { 
            value = value + sn + "\n"; 
            value = value + Err.description + "\n"; 
         } 
      } 
   } 
 

 
If an error occurs when the code in the ‘try block’ is executed, the program will automatically enter the 
‘catch block’. Here the error code (in hexadecimal format) and the error description will be written to the 
text area of the HTML page. 
 
Note that some errors come from the TEM Scripting component itself and some come from the 
underlying software infrastructure (e.g. COM layers). As an example of the latter, should creation of the 
‘Instrument’ object fail then the error code and message returned will be a general error message and 
not something specific to the TEM Scripting component itself. Unfortunately in some cases this general 
error message hides the more useful underlying message. For instance, JScript will miss the useful 
description ‘TEM scripting: Protection key missing!’ indicating that the Customer Dongle is missing... 
 

26.6 Image Acquisition 
This section explains how to acquire image data in JScript client code. This is done through a series of 
worked examples. 
 

26.6.1 Handling Array Data 
The TEM Scripting component uses Microsoft COM Technology to expose its interfaces and methods to 
clients. The primary reason for this is to allow TEM Scripting to be accessed from a variety of different 
languages (e.g. VBScript, JScript, Visual Basic, C++, Delphi, Python, C#). 
 
However, one of the key differences between VBScript / JScript clients and the others is the manner in 
which array data is handled. This problem has been resolved in Tecnai 4.3 (or later) and Titan 1.4 
(or later). If you require a fix for an earlier version please contact FEI (Dave.Karetnyk@fei.com) to 
determine a suitable workaround. 
 
The TEM Scripting calls that are affected by this are outlined in the following sub-sections. 
 

26.6.1.1 Get Acquired Image as VARIANT 
For JavaScript / VBScript clients the ‘AsSafeArray’ property on the ‘AcqImage’ interface cannot be used. 
Instead the property ‘AsVariant’ should be used. 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

73

 
The following JavaScript code snippet shows how the property might be used. It retrieves the image data 
as a two dimensional array then displays information about the array along with the first few pixel values 
in a text box on the HTML page (see example in section CCD Acquisition Example below for more 
details). 
 
   
   // get the pixel data, use 'AsVariant' which returns the data as an SAFEARRAY of 
   // VARIANTS packed into a VARIANT. 
   g_imageData = g_acquiredImage.AsVariant; 
 
   with (_textAreaMessagesAndErrors) { 
      value += "image array, # of dimensions is " + g_imageData.dimensions() + "\n"; 
      value += "first dimension, lower bound is " + g_imageData.lbound(1) + "\n"; 
      value += "first dimension, upper bound is " + g_imageData.ubound(1) + "\n"; 
      value += " second dimension, lower bound is " + g_imageData.lbound(2) + "\n"; 
      value += "second dimension, upper bound is " + g_imageData.ubound(2) + "\n"; 
 
      value += "first few pixel values are: "; 
      for (var i = g_imageData.lbound(1); i <= 10; i++) { 
         value += g_imageData.getItem(i, 0) + " "; 
      } 
      value += "\n\n"; 
   } 
 

 
The pixel data is returned as a two dimensional array with the first element starting a 0. For instance a 
512x512 image will be returned as a two dimensional array with 262144 elements, so no header is 
returned with the image data. And the image rows and columns will be indexed from 0 to 511. The 
elements are of type 32 bit signed integer. 
 

26.6.1.2 Get Camera Binnings as VARIANT 
For JavaScript / VBScript clients the ‘Binnings’ property on the ‘CCDCameraInfo’ interface cannot be 
used. Instead the property ‘BinningsAsVariant’ should be used. 
 
The following JavaScript code snippet shows how the property might be used. It retrieves the binnings 
for the current camera then displays them in a text box (see example in section CCD Acquisition 
Example below for more details). 
 
   
   // fetch and display the supported binnings, use 'BinningsAsVariant' which returns 
   // the data as an SAFEARRAY of VARIANTS packed into a VARIANT. 
   binnings = g_camera.Info.BinningsAsVariant; 
   with (_textAreaMessagesAndErrors) { 
      value += "binnings array, # dimensions is " + binnings.dimensions() + "\n"; 
      value += "binnings, lower bound is " + binnings.lbound(1) + "\n"; 
      value += "binnings, upper bound is " + binnings.ubound(1) + "\n"; 
      value += "available binnings are "; 
      for (var i = binnings.lbound(1); i <= binnings.ubound(1); i++) { 
         value += binnings.getItem(i) + " "; 
      } 
   value += "\n\n"; 
   } 
 

 
In principle the array that is returned can be multi-dimensional (see section Get Acquired Image as 
VARIANT above dealing with image data). But in this case the array will have only one dimension with 
the first element starting at 0. For example, a camera supporting binnings 1, 2, 4, and 8 will be returned 
as a one dimensional array with 4 elements, the first element at index 0 and the last at index 3.The 
elements are of type 32 bit signed integer. 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

74

26.6.1.3 Get CCD Shutter Modes as VARIANT 
For JavaScript / VBScript clients the ‘ShutterModes’ property on the ‘CCDCameraInfo’ interface cannot 
be used. Instead the property ‘ShutterModesAsVariant’ should be used. 
 
The property for returning the CCD shutter modes is pretty much identical to that used for the CCD 
binnings (see previous section Get Camera Binnings as VARIANT). So the modes will be returned as a 
one-dimensional array of 32-bit signed integers with the first element starting at 0. For a full example, 
see in section CCD Acquisition Example below. 
 

26.6.1.4 Get STEM Binnings as VARIANT 
For JavaScript / VBScript clients the ‘Binnings’ property on the ‘STEMDetectorInfo’ interface cannot be 
used. Instead the property ‘BinningsAsVariant’ should be used. 
 
The property for returning the STEM binnings is pretty much identical to that used for the CCD binnings 
(see previous section Get Camera Binnings as VARIANT). So the binnings will be returned as a one-
dimensional array of 32-bit signed integers with the first element starting at 0. For a full example, see in 
section CCD Acquisition Example below. 
 

26.6.1.5 Get Acquired Image as File 
The ‘AsFile’ method of the ‘AcqImage’ interface allows clients to request that an acquired image be 
saved in a specified format and in a specified location. TIFF (16-bit), JPG (8-bit), and PNG (16-bit) are 
currently supported. For a full example, see section CCD Acquisition and Display Example below. 
 
This method can be used by any type of client, Scripting or otherwise. But it is particularly relevant for 
JScript / VBScript clients as an easier means of saving pixel data for either processing off-line or for 
Browser display. 
 
The following JavaScript code snippet shows how the property might be used. For illustration is shows 
saving a previously acquired image in the three supported formats. 
 
 
   // file formats for saving images 
   var AcqImageFileFormat_TIFF = 0; 
   var AcqImageFileFormat_JPG = 1; 
   var AcqImageFileFormat_PNG = 2; 
   
   g_acquiredImage.AsFile("C:\\Temp\\SaveCcdImage.tif", AcqImageFileFormat_TIFF); 
   g_acquiredImage.AsFile("C:\\Temp\\SaveCcdImage.jpg", AcqImageFileFormat_JPG); 
   g_acquiredImage.AsFile("C:\\Temp\\SaveCcdImage.png", AcqImageFileFormat_PNG);  
 

 
Additionally, the following formats can in principle be used. Subject to proper testing and depending on 
feedback from customers these formats may be ‘officially added’ at a later date. 
 
 
   // these formats still under discussion/development, magic cookie of 123 needed 
   // to experiment with them 
   g_acquiredImage.AsFile("C:\\Temp\\Scripting\\SaveStemImage.raw", 123); 
   g_acquiredImage.AsFile("C:\\Temp\\Scripting\\SaveStemImage.ser", 123); 
   g_acquiredImage.AsFile("C:\\Temp\\Scripting\\SaveStemImage.mrc", 123); 
 

 
The raw format is an internal format used by FEI; its most likely use is when trying to diagnose 
problems with images since it allows inspection of the image data ‘exactly’ as it is returned from the 
Microscope Server. The ser format is the officially published TIA format. And the mrc format is the 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

75

format used by several microscopy related packages; it does not currently include the FEI extended 
header since only a single image is returned from the scripting component. Any feedback on the merits 
or otherwise of these formats is welcome (please mail to Dave.Karetnyk@fei.com ). 
 

26.6.1.6 Normalizing the Acquired Image 
The ‘AsFile’ method of the ‘AcqImage’ interface can also be used to ‘normalize’ acquired image data. For 
example, say an image is acquired which has minimum and maximum pixel values of 134 and 213 
respectively. If this is saved as a 16-bit PNG file and then displayed in the Browser it will typically be 
seen as a completely black image. 
 
For display purposes the image can be ‘stretched out’, e.g. using the previous figures the minimum 
intensity value (134) will be mapped to 0 and the maximum intensity value (213) mapped to 65535 when 
saving as a normalized 16 bit image. This will allow the image to be easily displayed in a Browser 
without any processing in the client code (hint – such processing is JavaScript / VBScript is not 
straightforward). 
 
The normalize variation of ‘AsFile’ is illustrated by the following code fragment where the current 
acquired image is stored first as a PNG file exactly as it was acquired from the Microscope Server and 
then secondly it is stored as a normalized image. 
 
 
   // file formats for saving images 
   var AcqImageFileFormat_TIFF = 0; 
   var AcqImageFileFormat_JPG = 1; 
   var AcqImageFileFormat_PNG = 2; 
 
   // save the image as PNG without any modification   
   g_acquiredImage.AsFile("C:\\Temp\\SaveCcdImage.png", AcqImageFileFormat_PNG);  
 
   // save the image as a normalized PNG file by passing -1 for the optional third parameter 
   g_acquiredImage.AsFile("C:\\Temp\\SaveNormalizedCcdImage.png", AcqImageFileFormat_PNG, -1);  
 

 
So the image will only be saved in normalized format if the optional third parameter is set to -1. 
 
However, the technique should be viewed as purely a convenience. In principle such image data 
adjustment should be the responsibility of the client code. 
 
And lastly, the normalize trick is of course available to all clients, not just Scripting clients. For a full 
example, see section CCD Acquisition and Display Example below. 
 

26.6.2 Example Programs 

26.6.2.1 CCD Acquisition Example 
File ‘CCDAcqJScript.htm’ installed in ‘C:\Tecnai\Scripting\JScript’ or ‘C:\Titan\Scripting\JScript’. 
 
Setup / preconditions: 
• To run the program create the directory ‘C:\Temp\Scripting’. 
• Make sure all software including TIA is running and that a CCD image can be acquired in TIA 

manually. 
 
The example illustrates how to: 
• Do some JScript basics: 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

76

o Embedding JavaScript and HTML code in one file. 
o Writing functions that respond to buttons on the HTML page being pressed. 
o Writing code to catch errors and display them on the user interface. 

• Connect to the Microscope Scripting Component. 
• Fetch the current camera and displays its characteristics, e.g. name, width, height, and available 

binning. 
o Fetching the available binnings and acquisition modes uses two of the properties added 

specifically for JScript / VBScript clients (properties ‘BinningsAsVariant’ and 
‘ShutterModesAsVariant’ respectively). 

• Acquire an image from the selected camera using specified acquisition parameters. 
o The raw pixel data is acquired via the property ‘AsVariant’. 

• Save the raw pixel data to text file. Note – depending on the image size this might be very slow! 
• Use the property ‘AsFile’ to save the acquired image in three different formats: 

o JPG, 8 bit, single-channel. 
o PNG, 16 bit, single-channel. 
o TIFF, 16 bit, single-channel. 

 

26.6.2.2 STEM Acquisition Example 
File ‘STEMAcqJScript.htm’ installed in ‘C:\Tecnai\Scripting\JScript’ or ‘C:\Titan\Scripting\JScript’. 
 
Setup / preconditions: 
• To run the program create the directory ‘C:\Temp\Scripting’. 
• Make sure all software including TIA is running and that a STEM image can be acquired in TIA 

manually. 
 
The example illustrates how to: 
• Do some JScript basics: 

o Embedding JavaScript and HTML code in one file. 
o Writing functions that respond to buttons on the HTML page being pressed. 
o Writing code to catch errors and display them on the user interface. 

• Connect to the Microscope Scripting Component. 
• Fetch the first available STEM detector and display its characteristics, e.g. name, width, height, and 

available binning. 
o Fetching the available binnings uses the property specifically added for JScript / VBScript 

clients (properties ‘BinningsAsVariant’). 
• Acquire an image from the selected detector using specified acquisition parameters. 

o The raw pixel data is acquired via the property ‘AsVariant’. 
• Save the raw pixel data to text file. Note – depending on the image size this might be very slow! 
• Use the property ‘AsFile’ to save the acquired image in three different formats: 

o JPG, 8 bit, single-channel. 
o PNG, 16 bit, single-channel. 
o TIFF, 16 bit, single-channel. 

 

26.6.2.3 CCD Acquisition and Display Example 
File ‘AcquireCCDSingleImage.htm’ installed in ‘C:\Tecnai\Scripting\JScript’ or ‘C:\Titan\Scripting\JScript’. 
 
Setup / preconditions: 
• Make sure all software including TIA is running and that a CCD image on the camera to be used can 

be acquired in TIA manually. 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

77

• If running the script on the Tecnai/Titan simulation software, the bias/gain reference setting will need 
to be changed. It is set to ‘AcqImageCorrection_Default’ which is what would typically be desired on 
the Microscope. To run in simulation, change the value to ‘AcqImageCorrection_Unprocessed’ in the 
method ‘SetupCameraAcqParams’ in file ‘shared_code.js’. 

 
The example illustrates how to: 
• Do some JScript basics: 

o Embedding JavaScript and HTML code in one file. 
o Organizing some common shared JScript code into a separate file and calling it 

(‘shared_code.js’). 
o Respond to user specified input (e.g. binning and image size) and convert that input to the 

appropriate TEM Scripting parameter. 
• Acquire an image from the selected camera using specified acquisition parameters. 

o The raw pixel data is acquired via the property ‘AsVariant’. 
• Use the property ‘AsFile’ to save the acquired image as a file in the format specified by the user. 
• Save a normalized version of the image to file and display that on the HTML user interface. 
 

26.6.2.4 Multiple CCD Acquisition and Display Example 
 File ‘AcquireCCDMultipleImages.htm’ installed in ‘C:\Tecnai\Scripting\JScript’ or 
‘C:\Titan\Scripting\JScript’. 
 
Setup / preconditions: 
• Make sure all software including TIA is running and that a CCD image on the camera to be used can 

be acquired in TIA manually. 
• If running the script on the Tecnai/Titan simulation software, the bias/gain reference setting will need 

to be changed. It is set to ‘AcqImageCorrection_Default’ which is what would typically be desired on 
the Microscope. To run in simulation, change the value to ‘AcqImageCorrection_Unprocessed’ in the 
method ‘SetupCameraAcqParams’ in file ‘shared_code.js’. 

 
The example builds on the previous example but allows for a sequence of CCD images to be acquired. 
This sequencing is achieved by using Windows timers. 
 

26.7 Example Programs 
Installed under ‘C:\Tecnai\Scripting\JScript’ the following examples can be found. 
 

26.7.1 Get/Set Image Beam Shift 
File ‘jscriptdebug2d.htm’ installed in ‘C:\Tecnai\Scripting\JScript’ or ‘C:\Titan\Scripting\JScript’. 
 
This example shows how to get and set the Image Beam Shift. 
 

26.7.2 Executing JScript code fragments 
File ‘jscripter.htm’ installed in ‘C:\Tecnai\Scripting\JScript’ or ‘C:\Titan\Scripting\JScript’. 
 
This example allows fragments of JScript code to be entered into the text box of an HTML page then 
executed. 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

78

26.7.3 Working with the Hand Panels 
File ‘jscriptexample.htm’ installed in ‘C:\Tecnai\Scripting\JScript’ or ‘C:\Titan\Scripting\JScript’. 
 
This is a small script that demonstrates how to work with the Hand Panels. 
 

26.7.4 Reading the Magnification 
File ‘magntest.htm’ installed in ‘C:\Tecnai\Scripting\JScript’ or ‘C:\Titan\Scripting\JScript’. 
 
Uses a Windows timer to regularly read and display the current Microscope magnification. 
 

26.7.5 Controlling the Stage 
File ‘stagetest.htm’ installed in ‘C:\Tecnai\Scripting\JScript’ or ‘C:\Titan\Scripting\JScript’. 
 
A small example that shows how to control the stage. 
 
  



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

79

27 TEM scripting in VBScript 
This chapter explains how to run a script in an HTML-page, as is also demonstrated in the example 
program. This way you can easily build a graphical user interface, using HTML input tags. An alternative 
approach would be to run a script using the windows scripting host. 

27.1 Create an ‘Instrument’ and get the secondary microscope object that you need 
The following code demonstrates how to get access to the projection system and the stage. In this 
example, the code is included into the HTML page (you could also specify the source-file using the SRC 
attribute of the <SCRIPT>-tag) and will be triggered, when the body of the HTML page is loaded: 
 
<HTML> 
 ... 
 <BODY ONLOAD="Connect()"> 
 ... 
 <SCRIPT LANGUAGE="VBScript"> 
<!--Option Explicit// Variables used throughout the script 
Dim MyTem 
Dim MyProjection 
Dim MyStage 
 ... 
Sub Connect() 
  MyTem            = CreateObject("TEMScripting.Instrument") 
  Set MyProjection = MyTem.Projection 
  Set MyStage      = MyTem.Stage 
  ... 
End Sub 
 ... 
--> 
</SCRIPT> 
</BODY> 
</HTML> 

27.2 Manipulate and read microscope parameters, invoke microscope actions 
If you use VBScript, you will be quite familiar with properties. Nevertheless, here is an example: 
 
MyProjection.MagnificationIndex = 5 
 
This statement will set the magnification index to a new value (=5). 
 
Dim MyLong;MyLong = MyProjection.MagnificationIndex 
 
reads the current value of the magnification index into the variable MyLong. 
Compound properties are read and set by using the TEM scripting adapters ‘utility objects’.  Thus 
 
Dim MyIlluminationDim MyShiftXDim MyShift 
Set MyIllumination = MyTem.Illumination 
Set MyShift        = MyIllumination.Shift 
MyShiftX           = MyShift.X 
 
would read the full 2D-beam shift first and then store its x-component in the variable MyShiftX. Be 
aware that MyShift contains a copy of the actual beam shift, although it seems to be passed as a 
reference (using "Set"). The reason is, that the copy is made by the adapter and is then passed. Thus, if 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

80

you want to get the new actual beam shift at a later moment in time, you have to ask for 
MyIllumination.Shift  again! Setting compound parameters then works as follows: 
 
Dim MyNewShift as Tecnai.Vector 
Set MyNewShift       = MyIllumination.Shift 
MyNewShift.X         = 0 
MyNewShift.Y         = 0 
MyIllumination.Shift = MyNewShift 
 
The code first gets a ‘Vector’ object by reading a 2D-property, then assigns new values (0,0) and then 
copies it back, thus setting the beam shift to zero (you cannot use "Set" here). 

27.3 Use the collections 
The adapter contains several collections, such as the ‘Gauges’ and the ‘UserButtons’ collections. A 
collection is a convenient way to store things of the same kind. The collections that come with the 
adapter are of fixed size, the script cannot add items. Reading items can be done in several ways: 
 
Dim MyGauges 
Dim g 
Dim sMsgs 
Msg = ""Set MyGauges = MyTem.Vacuum.Gauges 
For Each g In MyGauges 
  sMsg = sMsg & g.Name & ": " & g.Pressure & vbcrlf 
next 
Msgbox sMsg 
 
loops over all gauges of the vacuum system and then shows a message box containing the names of all 
gauges and the pressures measured with them. You can access single gauges via the ‘Item’-property of 
the collection (thus as MyGauges.Item(3) for example), but since ‘Item’ is the default property, you 
can more easily use the array-type syntax 
 
Set g = MyGauges(3) 
 
Probably often you will not know the index of the gauge, but its name, that you can read from the 
vacuum display of the microscope. The ‘Item’ property therefore also accepts the gauge name as 
identifier, for example it is possible to write 
 
Set g = MyGauges("P1") 
 
g now contains the information about the buffer tank pressure. Remember that the ‘Gauge’ objects are 
utility objects, so to get the new actual values, you have to ask for a new collection again: 
 
Set MyGauges = MyTem.Vacuum.Gauges 
 
does the job. 

27.4 Receive events from the user buttons 
Since we did not succeed in recieving events in VBScript from objects that cannot be created directly, an 
additional DLL is delivered for VBScript. Its name is scriptevents.dll. It only delivers one object, the 
‘TEMScriptingEvents’-object. Attention: Creating this object using 
 
CreateObject("TEMScripting.TEMScriptingEvents") 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

81

does not work! This function does not connect to the events. You have to use the <object>-tag in your 
HTML-code: 
 
<object id="MyTemEvents" 
   classid="clsid:5E896A91-A0BF-11d3-A688-00C04F9D480A" > 
</object> 
 
The name of the id-parameter can be choosen arbitrarily and is the name under which you later 
address the ‘TEMScriptingEvents’-object in your script. The ‘TEMScriptingEvents’-object does not have 
any properties or methods, it only supplies one event: Pressed(ButtonName). This function has to be 
implemented in your script and will be called, whenever one of the User Buttons on the TEM handpanels 
is pressed. In contrast to the ‘normal’ way of receiving the events via the ‘UserButton’-objects of TEM 
scripting, the VBScript-client will have to check whether the event is actually meant for him. He cannot 
make use of the intelligence that is built into the ‘UserButton’-objects of TEM scripting. The following 
example shows how to do it: 
 
Dim MyButtons 'need a "global" UserButtons-collection 
... 
'initialize collection in your "connect()" function 
Set MyButtons = MyTem.UserButtons 
... 
'implement the event: 
Sub MyTemEvents_Pressed(ButtonName) 
   'In VBScript you have to check whether the event is meant for you 
   Dim Button 
   Set Button = MyButtons("" & Name) 
       'Using "" & makes clear that we deal with a string 
   if ( (Button.Label <> "") 
       and (Button.Assignment = Button.Label) ) then 
         ' we indeed control the button 
         .... 
   end if 
End Sub 
 
Remember: The ‘UserButton’-Label is the Label of the Button as it is shown in the TEM user interface. If 
your script did an assignment to a button, then assignment and label coincide. Your assignment can 
(hopefully temporarily) be overwritten by another application (for example by the alignment procedures). 
You would then probably not want to react on the events. 

27.5 Errors and error handling 
Some of the microscopes functions may return (raise) an error. This can happen due to a physical 
reason, i.e. if the requested action is not possible at that moment. For example, you cannot ask the 
stage to perform a GoTo(), when it is wobbling or already moving. The high tension may not be switched 
on or raised under certain conditions and so forth. You may also have given parameters that are out of 
range (in that case the stage for example would not move either). Generally, calls to another process (ie 
from your script to the TEM server) may fail occasionally. So be aware and do the error handling - 
otherwise your application might die! 
 
If an error is raised, then a global Error object (Err) will be filled with detailed information about the error, 
if available. You can use this information for your error handling. Usually you will get an error code (a 
number), a textual description and maybe a text string with the name of the source that raised the error. 
If you want to do the error handling, you have to insert the following statement into the code: 
 
On Error Resume Next 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

82

This statement makes VBScript ignoring errors and is valid for the code to follow until the end of the 
function or subroutine. You then got the chance to ask the error object for its content. 
 
An example: 
Suppose your HTML page contains a form with a button named ‘cmdGoto’, and a text area named 
‘TextErrors’. Pressing the button triggers movement of the stage to a new position that is calculated from 
the old one -just as an example, you could invent some code here: 
 
<FORM ID="theForm"> 
 ... 
<INPUT TYPE=BUTTON NAME="cmdGoto" VALUE="Go" ONCLICK="OnGoto()"> 
 ... 
<TEXTAREA NAME="TextErrors" COLS=.. ROWS=.. READONLY> 
</TEXTAREA> 
 ... 
</FORM> 
 ... 
 ... 
Sub OnGoto() 
  Dim NewPos 
  Dim OldPos 
  Dim MyStage 
  On Error Resume Next 
  Set MyStage = MyTem.Stage 
  CheckError 
  Set OldPos  = MyStage.Position 
  CheckError 
  CalculateNewPosition(OldPos, NewPos) // some function 
  MyStage.Goto(NewPos, axisXY) 
  CheckError 
End Sub 
 
Sub CheckError() 
  If (Err.Number <> 0) Then 
       With theForm.TextErrors 
          .Value = .Value + "Error:" & 
                   Hex(Error.Number) & vbCrLf _ 
                   & "Source: " & Error.Source & _ 
                   vbCrLf & Error.Description & vbCrLf 
       End With 
  End If 
  Err.Clear 'Clears the error object 
End Sub 
 
In case of an error, the error code (in hexadezimal format), its source (if available) and the error 
description will be added to the text in the text area. If we would not clear the error object by using 
Err.Clear, we would handle the same error with the next check again. 
In some cases, for example when the creation of the ‘Instrument’ object fails, VBcript insists on its own 
error code and error message, overwriting any description given by TEM scripting. 
 
Note: For example you will miss the description "Tecnai scripting: Protection key missing!", that indicates 
that the protection dongle is missing. 
 
  



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

83

28 TEM scripting in Visual Basic 

28.1 Import the dynamic link library 
To get the support of Visual Basics IntelliSense mechanism and to be able to declare variables of the 
types that the adapter delivers (ie to use hard typing and early binding), you have to import the adapters 
dynamic link library into your project. This is easily achieved. 
• create a VB Project if that is not already done 
• reference the adapter : 
Click on the menu item Project – References. The following window will pop up (the actual contents will 
vary): 

 
 
Find the TEMScripting and check it. Now that the adapter is included into the project, you will see its 
objects, their properties and their methods appear in the object browser (click View – Object Browser or 
press F2): 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

84

 
For every item you will find a small description in the lower gray part of this window. Context sensitive 
help (try pressing F1) is also available, if you are working with VB6.0  

28.2 Create an ‘Instrument’ and get the secondary microscope object that you need 
The following piece of code shows how to get access to the projection system and the stage: 
 
Dim MyTem        as TEMScripting.Instrument 
Dim MyProjection as TEMScripting.Projection 
Dim MyStage      as TEMScripting.Stage 
Set MyTem     = new TEMScripting.Instrument 
Set MyProjection = MyTem.Projection 
Set MyStage      = MyTem.Stage 

28.3 Manipulate and read microscope parameters, invoke microscope actions 
If you use VB, you will be quite familiar with properties. Nevertheless, here is an example: 
 
MyProjection.MagnificationIndex = 5 
 
This statement will set the magnification index to a new value (=5). 
 
Dim MyLong as Long 
MyLong = MyProjection.MagnificationIndex 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

85

reads the current value of the magnification index into the variable MyLong. 
‘Compound’ properties are read and set by using The TEM scripting adapters ‘utility objects’.  Thus 
 
Dim MyIl     as TEMScripting.Illumination 
Dim MyShiftX as Double 
Dim MyShift  as TEMScripting.Vector 
Set MyIl    = MyTem.Illumination 
Set MyShift = MyIL.Shift 
MyShiftX    = MyShift.X 
 
would read the full 2D-beam shift first and then store its x-component into the variable MyShiftX. Be 
aware that MyShift contains a copy of the actual beam shift, although it seems to be passed as a 
reference (using "Set"). The reason is, that the copy is made by the adapter and is then passed. Thus, if 
you want to get the new actual beam shift at a later moment in time, you have to ask for MyIl.Shift  
again! Setting compound parameters then works as follows: 
 
Dim MyNewShift as TEMScripting.Vector 
Set MyNewShift = MyIl.Shift 
MyNewShift.X   = 0 
MyNewShift.Y   = 0 
MyIl.Shift     = MyNewShift 
 
The codes first gets a ‘Vector’ object by reading a 2D-property, then assigns new values (0,0) and then 
copies it back, thus setting the beam shift to zero (you cannot use "Set" here). 

28.4 Use the collections 
The adapter contains several collections, such as the ‘Gauges’ and the ‘UserButtons’ collections. A 
collection is a convenient way to store things of the same kind. The collections that come with the 
adapter are of fixed size, the script cannot add items. Reading items can be done in several ways: 
 
Dim MyTem as TEMScripting.Instrument 
Dim MyGauges as TEMScripting.Gauges 
Dim g        as TEMScripting.Gauge 
Open "TESTFILE" For Output As #1 
Set MyGauges = MyTem.Vacuum.Gauges 
For Each g In MyGauges 
    Print #1, g.name & ": " & g.Pressure 
next 
Close #1 
 
loops over all gauges of the vacuum system and prints their names and the pressures measured with 
them to a file named "TESTFILE". You can access single gauges via the ‘Item’-property of the collection 
(thus as MyGauges.Item(3) for example), but since ‘Item’ is the default property, you can more easily 
use the array-type syntax 
 
Set g = MyGauges(3) 
 
Probably often you will not know the index of the gauge, but its name, that you can read from the 
vacuum display of the microscope. The ‘Item’ property therefore also accepts the gauge name as 
identifier, for example it is possible to write 
 
Set g = MyGauges("P1") 
 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

86

g now contains the information about the buffer tank pressure. Remember that the ‘Gauge’ objects are 
utility objects, so to get the new actual values, you have to ask for a new collection again: 
 
Set MyGauges = MyTem.Vacuum.Gauges 
 
does the job. 

28.5 Receive events from the user buttons 
To receive the events connected with pressing user buttons of the TEM control pads (L1,..,L3 and 
R1,..,R3), you have to do the following (the example uses the user button "L1"): 
 
Private WithEvents MyButton as TEMScripting.UserButton 
Set MyButton = MyTem.UserButtons("L1") 
... 
'Activate events'and let a label be displayed in the TEM UI 
MyButton.Assignment = "my new label" 
... 
Private Sub MyButton_Pressed() 
     'Do what you want here 
End Sub... 
 
The procedure MyButton_Pressed will be invoked whenever the user button "L1" is pressed.  

28.6 Receive events from a remote microscope server 
If you want your application to connect to a remote microscope server and also receive the userbutton 
events from that remote machine, you have to add a call to the function CoInitializeSecurity that opens 
your application for calls from a remote system service. You have to do that, before VisualBasic does 
this for you under water, because this function call succeeds only once per application. What you have to 
do is to add a module to your application (Menue--Project--AddModule). In this module, add the following 
code: 
 
Option Explicit 
'see example VB application for more constants 
Private Const RPC_C_AUTHN_NONE As Long = 0 
Private Const RPC_C_AUTHN_LEVEL_NONE As Long = 1 
Private Const RPC_C_IMP_LEVEL_IMPERSONATE As Long = 3 
Private Const EOAC_NONE As Long = &H0 
 ' Import function from ole32.dll 
Private Declare Function CoInitializeSecurity Lib "OLE32.DLL" ( _ 
    pSD As Any, _ 
    ByVal cAuthSvc As Long, _ 
    asAuthSvc As Long, _ 
    pReserved1 As Any, _ 
    ByVal dwAuthnlevel As Long, _ 
    ByVal dwImpLevel As Long, _ 
    ByVal pAuthInfo As Long, _ 
    ByVal dwCapabilities As Long, _ 
    pvReserved2 As Any _) As Long 
  



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

87

Sub Main() 
  ' following code will fail in the IDE (debug mode). 
 
  Dim lngHr As Long 
  Dim lngAuthn As Long 
  lngAuthn = RPC_C_AUTHN_NONE 
  lngHr = CoInitializeSecurity(ByVal API_NULL, _ 
      -1, _ 
      lngAuthn, _ 
      ByVal API_NULL, _ 
      RPC_C_AUTHN_LEVEL_NONE, _ 
      RPC_C_IMP_LEVEL_IMPERSONATE, _ 
      API_NULL, _ 
      EOAC_NONE, _ 
      ByVal API_NULL) 
 
   If (S_OK <>lngHr) Then 
      MsgBox "CoInitializeSecurity failed with error code: 0x" _ 
      & Trim$(Str$(Hex(lngHr))) & vbCrLf & _ 
      "Ignore, if running in IDE - but you will not receive events " & _ 
      "from remote microscope server", _ 
      vbCritical, _ 
      "Application Initialization Failure" 
      Exit Sub 
  End If 
  ' Any additional code you need here. 
  frmYourframe.Show ' showing your starting form 
End Sub  
 
Now, in Project--Properties--General tab, change the startup object to Sub Main. Note that Sub Main has 
to have code to make your forms visible (such as frmYourframe.Show). The call to 
CoInitializeSecurity will fail, when you are working in the VB development environment (IDE), debugging 
your application. In that case, the IDE has already initialized COM security. This means, you will receive 
events only, if you run the compiled executable. 

28.7 Errors and error handling 
Some of the microscopes functions may return (raise) an error. This can happen due to a physical 
reason, i.e. if the requested action is not possible at that moment. For example, you cannot ask the 
stage to perform a GoTo(), when it is wobbling or already moving. The high tension may not be switched 
on or raised under certain conditions and so forth. You may also have given parameters that are out of 
range (in that case the stage for example would not move either). 
Generally, calls to another process (from your script to the TEM server) may fail occasionally. There are 
also some failures that may be VisualBasic-specific (see below). 
 
So be aware and do the error handling - otherwise your script might die! 
 
If an error is raised, then a global Error object (Err) will be filled with detailed information about the error, 
if available. You can use this information for your error handling. Usually you will get an error code (a 
number), a textual description and maybe a text string with the name of the source that raised the error. 
 
The following piece of code gives an example: 
 
(Suppose you have a form with at least a button named ‘cmdGoto’ and a textbox named ‘txtDisplay’. As 
reaction on a button-click a new stage position is calculated -just as an example, you could invent some 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

88

code here- and the stage is requested to move to that position. In case of an error the content of the 
error object is shown in the textbox): 
 
Private Sub cmdGoto_Click() 
Dim NewPos  as TEMScripting.StagePosition 
Dim OldPos as TEMScripting.Stageposition 
Dim MyStage as TEMScripting.Stage 
On Error GoTo ComError: 
   Set MyStage = MyTem.Stage 
   Set OldPos  = MyStage.Position 
   CalculateNewPosition OldPos, NewPos 
   MyStage.Goto NewPos, axisXY 
Exit Sub 
ComError: 
   txtDisplay.Text = _ 
     txtDisplay.Text & "Error # " & Hex(Err.Number) & _ 
     " was generated by " & Err.Source & vbCrLf _ 
     & Err.Description & vbCrLf 
   txtDisplay.SelStart = Len(txtDisplay.Text) 
End Sub 
 
At the end of the error handling you can either do nothing (as in the above example), that is leave the 
function or add either 
 
Resume 
 
which jumps back to the line in your code where the error occurred or 
 
Resume Next 
 
which jumps back to the next line in your code 
 
Goto MyLabel 
 
jump to a specified label, here named MyLabel. 
 
Another possibility is to use the 
 
On Error Resume Next 
 ... 
On Error Goto 0 
 
statements. This allows you either to ignore errors or ask for the contents of the Err object after each 
relevant statement and do the error handling ‘in place’. If you handled an error you should then clear the 
content of the error object, using Err.Clear. 
For more information see the Visual Basic documentation. 

28.8 Visual Basic-specific Errors 
At last, two examples of errors that you might encounter and which may be specific to Visual Basic 5.0 
(but we have not yet checked in other scripting languages and the 6.0 version): 
 
1) From a VB application it is not allowed to do more than one out-of-process call at a time. You might 
think that this is a rare situation, but you can easily encounter this case. Imagine the following: You have 
a timer running in your application that polls for certain microscope parameters of interest in regular time 
intervals. (Maybe you want to protocol the vacuum pressures or the stage position.) At the same time 



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

89

your application has a user interface, through which the user can request actions by pressing a button 
(maybe start a pumping cycle or an exposure of some kind). Then, especially when you use functions 
that take a long time to complete, there is a chance that your application tries to issue a call from your 
timer loop while a first one (issued via a button command) did not yet return. This second call will then 
fail (error description: "illegal to call out while inside message filter"). The reason is the way the 
apartment threading and message loop are implemented in VB. 
 
2) A right click on the applications button in the Windows button list will also cause the out of process 
calls to fail, as long as the small "Restore, Move, Size etc."-menu is open (see image below). We did not 
do any further research why this happens, but it may be related to 1). 
 

 
 
   
   
 
    



TEM help                                                 
Scripting Version Titan 2.6 / Talos 1.6 / Tecnai 5.6, and higher

90

29 Revision History 
31st March 2012, Dave Karetnyk: 
• Revised for Tecnai 4.3 software release. 
• Interface additions to support JavaScript and VBScript clients retrieving image data. 
• Additions to JScript chapter, examples on image acquisition in particular. 
• Gauge Objects section: virtual/pseudo names are no longer supported. 
 
20st August 2013, Max Otten 
• Inserted note about no 64-bits scripting 
• Inserted note about no remote acquisition possible 


