Linux Commands Used in the Electron Microscopy Center (EMC) – Alphabetical Order

	Command
	Target(s) and/or Options
	Explanation

	alias
	newCmd def
newCmd=def
	alias is an extremely useful command that allows the user to define a new command (called newCmd) that is itself composed of commands that are understood by the shell (called def, for "definition"); different flavors of shell use a slightly different syntax for the alias command (for example, bash uses newCmd=def while tcsh simply puts a space between newCmd and def); for bash, if the definition contains spaces, it must be enclosed in double or single quotes (" or ')
the alias command is most often invoked when the user realizes that there is a complicated command (or even a series of commands) that is used frequently; for example, if you always want to see long listings of files, the bash command
$ alias ls=" ls -l "
effectively defines ls to always be ls -l (and when you actually want a simple ls command, you would then need to type \ls, where the backslash says to use the system's ls command instead of any user-specified aliases)
NOTE: instead of replacing a command with an aliased version of it (as in the example shown above), it is usually wiser to create a completely new command; for example, instead of aliasing ls to always mean ls -l, it might be more prudent to create a command such as ll that is aliased to mean ls -l instead
you can also create much more complicated alias commands that use pipes, command substitutions and command separators; for example,
$ alias createdToday=' TODAY=` date | cut -c5-10 ` ; LIST=` ls -lc | grep "${TODAY}" | cut -f2 -d: | cut -f2 -d" " ` ; for file in $LIST ; do echo $file ; done; unset TODAY LIST '
defines a new command called createdToday which simply lists any files that were made or modified today; a full explanation of this command can be found here

	
	none
	when alias is used alone, a list of all defined aliases is sent to the terminal

	apropos
	keyWord
	the apropos command searches something called the "whatis database" for the string keyWord; the whatis database is a collection of short descriptions of various system commands and tools, all of which have some amount of documentation in the system manual pages (usually simply called "man pages"); the output of apropos is a list of all the man pages that contain keyWord in their whatis database description; the output actually shows the command, the section number of the man pages that contain the entry of interest and a 1-line description of the command; for example
$ apropos recompress
produces
znew (1) - recompress .Z file to .gz file
meaning that the znew command is found in man page section number 1 and converts from a particular form of compressed file to another form
it is possible to search for multiple key words, but keep in mind that the output is additive and not a combined search; in other words, apropos module unload will not show you the system commands that contain both the key words module and unload in the whatis database, but rather it will show all the system commands that contain the key word module plus any additional commands that contain the key word unload

	basename
	name
	the basename command removes all leading directory information from name; for example,
$ basename /N/u/userName/Quarry/myData.txt
produces "MyData.txt"
this is the opposite action to the dirname command (see below), which prints everything except the final slash-delimited part of any string

	
	name suf
	when a basename command ends with suf ("suffix"), it removes both the leading directory information and the suffix suf (if and only if suf matches the end of name); for example,
$ basename /N/u/userName/Mason/myData.txt .txt
produces "myData" while
$ basename /N/u/userName/Mason/myData.txt .sh
produces "myData.txt"

	cut
	-f n input
	the cut command cuts out the field(s) specified with the -f n option from each line of input, where input can be a single file, multiple files or standard input (stdin)
the value of n in -f n can be a single number, comma separated numbers, a starting and ending range of numbers (e.g., 2-7) or any combination of these (e.g., 1,3-5,8,9,12-15)
NOTE: the order of these numbers has no effect on output
by default, cut uses tabs as the field delimiter; if a line contains no tabs, the entire line is treated as "tab-delimited field 1" and either eliminated (if -f n does not include field 1) or retained (if it does)

	
	-f n -d char
	the -d char option changes the field delimiter from tab to char, where char must represent a single character; when using characters such as double or single quotes as the field delimiter, it will be necessary to use a backslash to "escape" the symbol (i.e., to force the shell to ignore the fact that it would normally find these symbols in pairs and they would have some sort of special meaning); this command uses a blank as the field delimiter
$ cut -f2-4 -d " " myFile.txt
while this one uses a double quote
$ cut -f2-4 -d \" myFile.txt

	
	-c n
	another way to use cut is to tell the command which characters to output; for example, this command would show you the first 10 characters in each line of input
$ cut -c 1-10 myFile.txt
while this one would show the 5th character, and the characters in positions 20 thru 30
$ cut -c 5,20-30 myFile.txt

	date
	none
	the date command without an option sends the current date and time to the terminal; the default format is
Day-of-week Month Day Hr:Min:Sec Timezone Year

e.g. Thu May 16 19:47:27 EDT 2013
but there are lots of ways to display this information

	
	+%m%d%y
+%H%M%S
	the + (plus sign) is the start of an option to the date command that changes the output format from the default shown above; the detailed format for the output is set using a series of percent symbols (%'s) followed by a single upper or lower case letter; in this example, %m means "numeric month", %d means "day of the month", %y means "2 digit display for the year", %H means "hour in the 0 and 23 range", %M means "minutes" and %S means "seconds"; the following commands
$ date +%m%d%y
$ date +%H%M%S
produce these two lines
051613
194727
you can string together as many of these %(letter) format designators as you would like, and so
$ date +%m%d%y%H%M%S
produces this line
051613194727
since this output is hard to read, you can insert your own "separators" between the format designations; valid separators can be symbols such as -, +, /, or even " " (a space); for example
$ date +%m-%d
$ date +%m/%d
$ date +%m" "%d (or +"%m %d")

$ date +%H:%M:%S
produce these lines
05-16
05/16
05 16

19:47:27
there are a huge number of format designators, all of which can be seen by typing date --help; just to list a few, %Y generates the 4 digit year, %A is the day of the week, %a is the 3 letter abbreviation for day of the week, %B is the name of the month, %b is the 3 letter abbreviation for the month, %Z indicates the alphabetic timezone abbreviation and %T is a short-hand equivalent of %H:%M:%S; there are even ways to insert formatting commands (e.g., a tab or a new line) into the output; to tie everything together, one explicit way to create the default format shown above would be to use this option
+"%a %b %d %H%M%S %Z %Y"

	
	+%s
+%s.%N
+%N
	when +%s is used to specify date and time, the current date and time is given as the number of seconds since 1970-01-01 00:00:00 UTC (the start of the UNIX epoch, also known as POSIX time)
+%s.%N includes the number of nanoseconds since 1970-01-10 00:00:00 UTC whereas +%N simply shows the number of nanoseconds within the current second

	
	-d @s
	when s is in seconds since 1970-01-01 00:00:00 UTC (see entry above), this command converts that value into the more usual date and time display

	diff
	file1 file2
	displays the differences between file1 and file2; the many, many options to diff affect the way output is displayed and details like whether blank lines or any differences in spaces in a text file are considered to be "different"

	
	-r dir1 dir2
	the -r option causes diff to show recursive differences between directories dir1 and dir2; the output shows not only the differences between files with the same name in the two directories, but it also lists files that only occur in one of them

	dirname
	name
	the dirname command removes the final slash-delimited component from name; for example,
$ dirname /N/u/userName/Quarry/myData.txt
produces "/N/u/userName/Quarry"
in the case where name contains the absolute path for any file, dirname produces the directory location (the pathname) for the file
this is the opposite action to the basename command (see above), which produces only the final slash-delimited part of any string

	echo
	string
	the echo command is a simple way to display a line of text (called string here); string can be enclosed within double or single quotes, or left unquoted; if quotes are used, remember that double and single quotes behave differently with the $, ` (back quote) and \ characters

	
	-e string
	the -e option is a way to tell echo to interpret a set of "backslash escapes" properly; for example, \n causes a new line to be inserted, \t inserts a tab stop, \a inserts an alert (e.g., rings a bell with some types of terminals), etc.; a list of the recognized backslash escapes can be obtained by typing man echo

	find
	start target
	find is an extremely complicated command that in its most fundamental use locates (finds) files on the computer (and remember that everything is a file, so find can locate anything that exists on the system); the syntax for find is complex, and only a few simple examples will be shown here
find requires a directory to start looking in (here called start) and something to look for (called the target)
in the this example, find begins looking "here" (./) and locates any DigitalMicrograph files (*.dm3) that live "here" (or the in directories below "here")
$ find ./ -name "*.dm3"
the output is the name (including the relative path) of all the .dm3 files find can locate; the double quotes used in this example are important (and single quotes could also be used here); if no quotes are used, find only reports the files it locates "here" (i.e., without descending into directories below here)
you could search the entire filesystem for txt files by starting the search at / (but keep in mind that places where you do not have permission to read files can not be searched)
$ find / -name *.txt
as can be seen from this example, when find does not start "here", the use of quotes is optional
find has numerous options, and can (for example) be used to locate files created after date X and before date Y; you can use find to locate all files that are a particular file type (regular files, directories, symbolic links, etc.); you can even tell find to execute some sort of command on the files it locates (for example, locate empty directories and then delete them)

	grep
	pattern input
	grep (and related commands like egrep & fgrep) are pattern matching tools; the odd name comes from a command in the early Unix editor named ed that deals with global patterns, regular expressions and printing
the action of grep is to search input for instances of pattern; input can be a single file, multiple files or standard input (stdin), pattern is any sort of regular expression and the output when none of the many options are invoked is the entire line from input that contains pattern
$ grep cryoem .modules
produces the single line
module load cryoem
while
$ grep / .modules
produces multiple lines
module load gcc/4.7.2 moab/7.1.1
module load perl/5.16.2 python/2.7.3
grep has a huge number of options, and only a few will be mentioned below; also bear in mind that details of the outputs described below may change depending on whether input is a single file, stdin or multiple files

	
	-i
	the -i option causes grep to ignore upper/lower case distinctions in pattern (and the long word equivalent is --ignore-case); for example, if you were looking for all the uses of x-ray in a text, and wanted to be certain not to miss any instances of X-ray (either at the beginning of a sentence or any inconsistency in whether the author used x-ray or X-ray), the command is
$ grep -i x-ray textFile
and you could use X-RAY (or x-rAY or X-RaY or...) in place of x-ray...

	
	-v
	as powerful as it can be to find matches to pattern in input, there are also times when what you really want is to find all lines that do not match pattern; the -v option does this, effectively ignoring lines that contain pattern; the other way to invoke this action (--invert-match) explains why this option uses a "v"

	
	-c
--count
	the -c option (from "count") returns only the number of matched lines in input (and note that this is not the number of times pattern occurs, but rather simply the number of lines that contain one or more instances of pattern)
continuing from the example using --ignore-case, if you wanted simply to count the lines containing x-ray, X-ray or any possible permutations of lower and upper case versions of x-ray, use these commands
$ grep -c x-ray textFile
$ grep -c X-ray textFile
$ grep -ci x-ray textFile
the initial thought is that the last command would give a number that is the sum of the first two, but that is incorrect for several reasons; since occurances of x-ray and X-ray can be on the same line, the sum of the first two commands (which count lines containing x-ray and X-ray, respectively) could be less than the count which ignores the case difference; in addition, since the -i option looks for not only x-ray and X-ray but also X-Ray, x-Ray, x-RAY, etc., this count could actually be larger than the sum of the lines containing either x-ray or X-ray

	
	-n
	the -n option causes grep to prefix the line number to the output line where pattern occurs in input (and the other way to invoke this effect is --line-number); this can be helpful when you are searching a large file and want to know how far into it the matching pattern occurs

	
	-l
	the -l option is only used when input to grep is more than a single file (and is not stdin); this option causes grep to list individual files that contain pattern anywhere within them; the other form of this option is --files-with-matches which is clearly more descriptive if not harder to type

	head
	file
	head is related to "header" or "heading" and sends the first 10 lines of file to the terminal window; different systems may show a different number of lines by default

	
	-i file
-n i file
--lines=i file
--lines=-i file -n -i file
	show the first i lines of file in the terminal window; the last two options (--lines=-i and -n -i file) means "do not show the last i lines of file, but show every other line"

	info
	none
	when info is started without options, it displays some very minimal help about using the command and then lists all the topics for which there is documentation; use the spacebar to scroll through the topics and q (for "quit") to exit info
typing h accesses a help session from anywhere inside info; this opens a help session in the lower half of the terminal which shows various ways to navigate through the many pages of documentation; for example, the up/down arrow keys, the spacebar and other keys such as Home, End, Tab and Del all allow you to go back and forth through the info pages; keep in mind that there are many pages of this small help session, and that typing x will always exit you from help
an even more extensive help tutorial can be accessed by tying H (and x will also get you out of this session without leaving info)

	
	topic
	when started this way, info displays documentation specifically about topic ; the information accessed using info is similar to that found using man, but info tends to be organized differently, to be somewhat easier to read and to contain examples for many of the topics; in some instances, if info contains more documentation than the corresponding man page, the man page will direct you to the appropriate info topic
even when info is started with a specific topic, you can go to the starting point seen when no options are used simply by typing d (which comes from "directory node")

	kill
	[-s sig] pid
	the kill command is used to terminate the process associated with process identifier pid (the number used by the operating system to uniquely identify every process); the optional use of -s sig (for "signal") allows the user to specify which signal is actually sent to terminate the process; there are over 60 different signals and a list can be obtained by typing kill -l
the most common use of kill is simply to stop the process in question using the safest signal (number 15, also known as SIGTERM); in a situation where kill pid does not stop process pid, it may be necessary to use kill -s 9 pid (or kill -9 pid or kill -KILL pid), which sends the SIGKILL signal; this will always stop any process you have permission to stop, but keep in mind that some processes may take a bit of time to stop...

	[bookmark: Man]man
	cmd
	man displays the manual page (usually referred to simply as the man page) for command cmd; the man page documentation describes the command, all it's options and ends with information about the author; it also often lists other, related commands; if there are files associated with a specific command, these will usually be listed near the end of the man page; this documentation can be shockingly brief or extremely extensive; as a general rule, man pages do not give examples of command use (while the info command does); it can take considerable practice to read and understand man pages!

	
	section cmd
	there are sometimes multiple man pages for a single command; the man pages are actually organized into different sections, and the user can explicitly tell the man command which section to use by specifying the section number (if it is known); the manual sections are often highly customized on different computer systems, but the following sections are used in most cases
1. User Commands
2. System Calls
3. C Library Functions
4. Devices and Special Files
5. File Formats and Conventions
6. Games
7. Miscellaneous
8. System Administration and Deamons
as an example, there are two entries for the listen command on Karst; the first is for a user command described in the section 1 man pages while the second is a command that is described in the POSIX sub-area of section 3 (refered to as 3p); these individual man pages can be seen by typing man 1 listen and man 3p listen, respectively

	nice
	-n prio cmd
	if a normal command (cmd, which in this context is understood to also include all options and targets) is started as the target of a nice command, the user is setting the scheduling priority of the command; this priority dictates the importance of a process (and is used by the system to decide how much of the total computer resources any process receives); the nice command allows the user to tell the system that a command is higher (or lower) priority than the default priority; the name of the nice command essentially comes from the dictate to play nicely with others...
the obligatory -n prio option to nice is the part of this command that sets the priority; values for prio can range from -20 (the highest priority) to +19 (the lowest)
there are limits on how high a normal user can set any process: the system itself must perform certain tasks in order for it to function, and limits on how high a user can set processes ensure that system processes always have the highest priority (and can perform the tasks necessary for the system to continue to function)

	ps
	none
	ps comes from "process status" and the command reports a snapshot of the processes running on your computer; ps can be invoked without any options, but that does not produce particularly useful output.
ps is one of the very old Unix commands that both accepts a large number of options and that accepts options in a variety of formats (e.g., some single letter options cannot be invoked with a "-", some must be and there are also "word options" that need a "--"); you will need to look elsewhere for a more detailed description of what can be done using ps

	
	-u userName
	when ps is invoked with -u userName, the results show all the active processes that are owned by the user called userName; here is an example of some output

PID: 3065
TTY: ?
TIME: 00:00:00
CMD: sshd
PID: 3066
TTY: pts/17
TIME: 00:00:01
CMD: bash
PID: 5032
TTY: pts/39
TIME: 00:00:00
CMD: ps
where PID is the process identifier (a number used by the operating system to uniquely identify every process), TTY is the identification of the "terminal" associated with the process, TIME is the amount of computer time used by the process and CMD is the command associated with the process; from this description, it should be clear that every command you run in linux is a unique process
a common use of ps would be to pipe the output into a grep command that would then find the PID for a specific command; for example
$ ps -u userName | grep python
will show the instance(s) of python being run by user userName; this command could be used to find the PID of any python processes that are running, and the PID(s) could be terminated using a kill command

	
	-f
	another useful option to ps is -f, which causes the command to output the entire ("full") command that was originally used; some of the output for the command ps -u userName -f is
UID: userName
PID: 3065
TTY: ?
TIME: 00:00:00
CMD: sshd: userName@pts/1

UID: userName
PID: 3066
TTY: pts/17
TIME: 00:00:01
CMD: -bash

UID: userName
PID: 5032
TTY: pts/39
TIME: 00:00:00
CMD: ps –u username -f
where the new column UID is the name used by the operating system to uniquely identify user userName; in this example, the major change is that instead of simply listing PID 5032 as the command ps, the output contains the full command that generated the output

	renice
	newPrio pid
	renice is related to the command nice (which sets the scheduling priority of a command when that process is started); in the case of renice (where the name comes effectively from "redo nice"), the priority of the running process associated with process identifier pid is set to level newPrio
values for newPrio range from 0 (the highest priority level a normal user can make) to 20 (the lowest); a user must own a process in order to adjust its priority, and a user can only lower the priority of a running process; in other words, a user can adjust a job running with priority 10 to 11 or higher (lower priority) but not to 9 or less (higher priority); this is true even if that user had originally renice'd the priority low and now wants to return it to the starting priority

	script
	none
	the script command is a way to save everything printed in a terminal window to a text file; this includes your typing and anything that the computer sends to you; when script is invoked without any options, the created file is called "typescript" (and you can think about the command name coming from this typescript filename, or vice versa); saving information to the typescript file is terminated by typing a control-D, exit or logout and may depend on which shell you are running

	
	name
	when the option name is used, saved information is stored in a new file called name; if name already exists, it will be over-written (and lost); this is also true when information is saved to the typescript file: an existing typescript file will be over-written

	
	-a name
	when the option -a name is used, saved information is appended into an existing file called name (and if file name does not exist, it will be created)

	sed
	script input
	sed is an extremely useful "stream editor" that filters and transforms text, and is such a complex command that books have been written about it; a general over-view of sed would be to say that it reads the input line by line and performs actions that are described by something called a "sed script"
input can be single or multiple files or standard input (stdin); the actions described by the sed script can be quite simple or extremely complicated, and script can be a separate file or simply a set of actions described on the command line
here are some extremely simple examples of sed; the following command finds every occurance of "X-ray" in file myFile.txt and replaces it with x-ray
$ sed -e "s/X-ray/x-ray/g" myFile.txt
the -e option to sed indicates that the script to use is found on the command line (and comes from "execute the following" or something similar); the script itself is the phrase within the double quotes, s/X-ray/x-ray/g, where the /'s break the script into four parts: s (the first part) means "substitute", X-ray (the second part) is the target of the substitution, x-ray (the third part) is what gets substituted for the second part and g (the fourth part) means "do this whenever possible" (i.e., "globally" - replace every instance of X-ray with x-ray)
a shorthand way to represent this sort of substitution script is s/pat1/pat2/g where pat1 is the pattern to find and pat2 is the replacement; changing the g in this script to a number N causes sed to replace only the Nth occurance of pat1 with pat2; the following example changes only the 3rd instance of X-ray (and does nothing if there are only two or fewer matches to X-ray)
$ sed -e "s/X-ray/x-ray/3" myFile.txt
a designation like Ng leaves the first (N-1) instances of pat1 unchanged but changes all the remaining ones to pat2 (where the g again comes from global)
a common use for a sed substitution script would be to change the pathname for a series of files from one location to a different location; since the pathnames will likely contain /'s, it is easy to see how sed might become confused when given a script that has more than four parts delimited with /'s; fortunately, sed can use any other character as the delimiter
$ sed -e "s]X-ray]x-ray]9g" myFile.txt
which changes every instance of X-ray to x-ray, but starting with the 9 occurance
another useful trick is to find occurance of pat1 and replace them with an augmented pat1 (i.e., pat2 is really just pat1 with some things added to it); in such a case, the following shorthand notation is useful
$ sed -e "s/X-ray/& (or electron)/g" myFile.txt
this command replaces every occurance of X-ray with the phrase X-ray (or electron)
there are ways to use sed that manipulate a specific line or lines and ranges of lines, ways that look for a pattern but then replaces a second pattern with a third only on lines that contain the first pattern, ways to add and/or delete lines based on pattern matching and a host of other ways to manipulate text
the key to sed is that it uses the power of regular expressions to find patterns and manipulate them

	sort
	file
	the sort command sorts lines of a text file; the default behaviour of sort will depend on your linux system and your locale setting, but in general, the output order will show punctuation followed by numbers followed by letters (and possibly sorted into capital letters first)
because sort can work with stdin, it is an extremely powerful tool when other commands are piped into it

	
	-n
--numeric-sort
	the -n option causes sort to use numeric value (and not to sort numbers based on alphanumeric values!); this may seem like a rather trivial distinction, but when sorting without the -n option, 111 comes before 12 instead of after; sometimes that may be what you want, but sometimes it isn't!

	
	-r
--reverse
	the -r option causes sort to reverse the order that it would normally output;

	
	-k field
--key field

(often used with -t sep)
	the -k field (--key field) option causes sort to operate on the kth field in each input line; unless the -t option is used, fields are separated by a transition from non-blank to blank regions (i.e., any number of spaces acts like a single separator);
the -t sep (or --field-separator sep) option is only meaningful when used with a -k field option; it allows the user to specify what character (sep) to use as the separator between fields
one example of this might be if you wanted to sort the type of comma-separated output (abbreviated as csv output) produced by various spreadsheet programs: since each cell in a spreadsheet might contain spaces, it would not be useful to break this output into fields based on (the default) non-blank to blank transition; instead, you could specify (for example) -k 6 -t , and sort based on the content of the 6th cell in the original spreadsheet

	tail
	file
	show the last 10 lines of file in the terminal window (and so in a sense, tail is an opposite of the head command, and the name of this command is either related to this head/tail dicotomy or from something like "show the tailend of file"); different systems may show a different number of lines by default

	
	-i file
-n i file
--lines=i file
--lines=+i file -n +i file
	show the last i lines of file in the terminal window; the last two options (--lines=+i file and -n +i file) causes the lines starting at line number i to be sent to the terminal window

	tar
	none
	tar comes from "tape archive" and is both a file format (a "tar file" also referred to as a "tarball") and this program that handles them; when tar is started without any options, it displays a specific error message with some suggestions and exits; the --help and the --usage options both show the many options that tar handles, but the --usage option is really nothing more than a list of options without any sort of explanation
the most common use of the tar command is to make archival tar files and/or to extract either the entire contents or specific files from them; tarballs can be created using any of several lossless file compression algorithms (and then must be uncompressed (inflated) in order to read them); such compressed archives are often used to transfer both programs and data across the Internet, and just about every computer has a way to inflate a compressed archive
Windows machines usually have built in compression and decompression tools; in addition, programs such as WinZip and 7-Zip can be installed; on Macs, tar should already be installed and is accessible in the terminal window; in addition, Stuffit Expander should also work on most tarballs
extensive help can be obtained for tar using man tar, info tar and various on-line resources

	tee
	name
	the tee command accepts standard input (stdin) and outputs it to both standard output (stdout) and to a file called name; if this file already exists, it will be over-written and lost

	
	-a name
	the -a name option allows tee to append its output to a file called name instead of over-writing it; as with other commands that append, if file name does not already exist, it will be created

	top
	none
	top is an example of the class of task managers that are found on various linux machines; top produces information about processes running on the system (and so is related to the ps command); while ps only generates a snapshot of that information, the output from top is continuously updated
there are many options to top, and users are advised to look at the documentation; for example, default output is sorted by the instantaneous amount of CPU used (and the name of the command comes from this display of the top CPU using processes), but the user can sort based on properties such as memory usage or the total amount of CPU a process has used; the information displayed using top can be modified to color code different outputs and the output itself can be totally reformatted
once top is running, an extensive set of "interactive" commands can be used to adjust the display and to manipulate the different processes; a common use of this interactive aspect of top is to find and then kill a specific process (similar to what could be done with a ps command to find the process identifier and then a kill command to terminate it)
another common interactive use of top is to adjust the scheduling priority of a process; you can think of this priority as a measure of how important a job is (and thus what percentage of computer resources should be devoted to it), and in certain situations, a user might want to lower the priority so that a process does not soak up all the available resources; this is comparable to what the renice command does, but again, the user would need to find the process identifier using a ps command and then renice to lower the priority
top without the -n option is a command that runs until the user stops it; the normal termination signal is to type a "q" (for "quit") but control-C also works

	
	-p pid [,pid2]
	the -p pid option tells top to monitor only the process associated with process identifier pid (and you can list multiple processes using either -p pid1 -p pid2 -p pid3 etc. or -p pid1, pid2, pid3 etc.)

	
	-n number
	the -n number option tells top the number of times to update its output before exiting

	
	-u userName
	the -u userName option tells top to generate output only for processes owned by the user userName

	tr
	set1 set2
	tr comes from "translate" (or "translitorate") and is a way to translate (or map) one specific character (or a set of characters, both referred to as set1 here) to another character (or a second set of characters, called set2 here); when using character sets, the number of characters in each set must be equal; each occurance of a character in set1 is replaced by the corresponding character in set2
a simple example may help clarify how this command works
$ echo "Hello world" | tr eo 30
produces
H3ll0 w0rld
where each e has been replaced with a 3 and each o has been replaced with a 0 (zero)
as noted above, the number of characters in set1 must equal the number in set2, but there is no limit on the actual number of characters in each; it is possible to specify ranges of characters in a set (so 0-9 means all the numbers, and a-z means all the lower case letters); tr also understands some "shorthand" sets such as [:lower:] (all the lower case letters), [:upper:] (all the upper case letters), [:alpha:] (all letters), [:punct:] (all punctuation) and [:digit:] (all the numerals)
tr only operates on the standard input (stdin) and if you want (for example) to use tr to turn all the text in a file to upper case, you will need to pipe the contents of the file into tr or to use redirection operators
$ cat file | tr [:lower] [:upper]
$ tr [:lower] [:upper] < file
in this example using a file, you will probably want to capture the output in a second file (called file2 here) using redirection (> file2) or by piping it into (say) a tee command (| tee file2)

	
	-d set1
	the -d option tells tr to "delete" the character(s) in set1; you can think about this as translating each character in set1 to nothing; always bear in mind that you are not replacing characters with the blank character (" "), but that the characters are being eliminated
$ echo "Hello world" | tr -d eo
produces
Hll wrld
if you really wanted to replace characters with a space, you would need to use
$ echo "Hello world" | tr eo " "
$ echo "Hello world" | tr eo ' '
which both produce
H ll w rld
remember that there must be two spaces enclosed in the quotes in the commands, and that there are two spaces between the last l from Hello and the w from world in the output

	
	-s set1
	the -s option tells tr to "squeeze" the character(s) in set1; the equivalent of -s is --squeeze-repeats, which is a better description of what the command does: it replaces every instance of repeated characters listed in set1 with a single instance
$ echo Hello world | tr -s l
$ echo 22 Bookkeeper Rd | tr -s [:alnum]
produces
Helo world
2 Bokeper Rd
where in the second example, the [:alnum] shorthand indicates all the letters and digits; the (in this case) un-necessary double quotes were also dropped in both examples

	uniq
	input
	uniq comes from "unique" and is a way to report the lines in input that are not exact repeats (i.e., that are unique to input); the many options to uniq allow the user to skip the first N fields or characters, to ignore upper and lower case differences, etc.
uniq only detects repeated lines that are adjacent to each other in input; in other words, if two (or more) identical lines are separated by non-identical lines, uniq will not treat the identical lines as "the same"; for this reason, input to uniq is often piped from a sort command
$ sort myFile | uniq

	
	-d input
	the -d (or --repeated) option to uniq causes the output to contain only the duplicated (or repeated) lines; this is the inverse of the normal behavior for uniq

	
	-c input
	the -c option comes from "count" (and another way to invoke this is --count); this option causes uniq to prefix each unique line with the number of times that line occurs
if you wanted the output to be listed in order of the number of occurences, you could pipe this into a numeric sort command
$ sort myFile | uniq -c | sort -n

	vi
	none
	this command starts a file editor called vi (and the name comes from a command in another text editor called ex); vi is a non-graphical text editor that is extremely non-intuitive to use; however, every linux machine will have vi installed and you may find it useful to learn some simple editing commands; the most useful editing commands to learn are how to exit (type ":q<Enter>") and how to get help (type ":h<Enter>")

	
	file(s)
	when the vi command includes one or multiple files, the editor starts with the file(s) open (ready to be edited); when multiple files are open, you will need to switch between them; the command to exit from all the files is ":qa!<Enter>"

	wc
	input
	wc comes from "word count" and is a command that shows information about the length of input (which can be either a file or the stdin input stream)
with no options other than input, the output shows the number of lines, the number of words and the number of bytes for the input
$ wc file

#lines #words #bytes file
for example
$ wc .modules

17 165 949 .modules
wc is often used with the pipe command to show the various counts for the output from a command; for example, the following command shows the number of DigitalMicrograph files in the current area
$ ls *.dm3 | wc
the resulting output (e.g., 50 50 857) shows that the number of lines is equal to the number of words (and both are equal to the number of files); you can also determine that the file names contain slightly more than 17 characters on average (857/50)

	
	-l input
-w input
-c input
-m input
	the options shown here limit the output to the number of lines (-l), words (-w), bytes (-c) or characters (-m)

	whoami
	none
	prints the user name; this is extremely useful when writing shell scripts, but can come in handy at other times also

	whereis
	name
	whereis locates a file called name on the computer system when it has been stored in some of the more standard linux places; whereis is designed to locate system-wide commands, source files, executable files (also called binary files or simply binaries) and manual pages
whereis removes common file extensions as it looks for these files; for example, "whereis ls", "whereis ls.1" and "whereis ls.1p" all show the command and two different man pages for the command ls
/bin/ls
/usr/share/man/man1/ls.1.gz
/usr/share/man/man1p/ls.1p.gz

	which
	name
	which is another command that searches for a file called name, except that the search is done using the current PATH variable; as soon as which finds name, the search is stopped (and so it is impossible for which to produce 2 locations for the same value of name); you can think of this as meaning that which finds the first (and only the first) instance of name along your path
more importantly, which name shows you the location of the instance of name that is executed when you simply type name (and in cases where you may have multiple commands or programs called name, this shows you which one of them occurs first on your path and is actually used); always keep in mind that having multiple instances of name in your path can lead to both confusion and mistakes

